Get Croissant metadata
The dataset viewer automatically generates the metadata in Croissant format (JSON-LD) for every dataset on the Hugging Face Hub. It lists the dataset’s name, description, URL, and the distribution of the dataset as Parquet files, including the columns’ metadata. The Croissant metadata is available for all the datasets that can be converted to Parquet format.
What is Croissant?
Croissant is a metadata format built on top of schema.org aimed at describing datasets used for machine learning to help indexing, searching and loading them programmatically.
Get the metadata
This guide shows you how to use Hugging Face /croissant
endpoint to retrieve the Croissant metadata associated to a dataset.
The /croissant
endpoint takes the dataset name in the URL, for example for the ibm/duorc
dataset:
import requests
headers = {"Authorization": f"Bearer {API_TOKEN}"}
API_URL = "https://huggingface.co./api/datasets/ibm/duorc/croissant"
def query():
response = requests.get(API_URL, headers=headers)
return response.json()
data = query()
Under the hood it uses the https://datasets-server.huggingface.co/croissant-crumbs
endpoint and enriches it with the Hub metadata.
The endpoint response is a JSON-LD containing the metadata in the Croissant format. For example, the ibm/duorc
dataset has two subsets, ParaphraseRC
and SelfRC
(see the List splits and subsets guide for more details about splits and subsets). The metadata links to their Parquet files and describes the type of each of the six columns: plot_id
, plot
, title
, question_id
, question
, and no_answer
:
{
"@context": {
"@language": "en",
"@vocab": "https://schema.org/",
"citeAs": "cr:citeAs",
"column": "cr:column",
"conformsTo": "dct:conformsTo",
"cr": "http://mlcommons.org/croissant/",
"data": {
"@id": "cr:data",
"@type": "@json"
},
"dataBiases": "cr:dataBiases",
"dataCollection": "cr:dataCollection",
"dataType": {
"@id": "cr:dataType",
"@type": "@vocab"
},
"dct": "http://purl.org/dc/terms/",
"extract": "cr:extract",
"field": "cr:field",
"fileProperty": "cr:fileProperty",
"fileObject": "cr:fileObject",
"fileSet": "cr:fileSet",
"format": "cr:format",
"includes": "cr:includes",
"isLiveDataset": "cr:isLiveDataset",
"jsonPath": "cr:jsonPath",
"key": "cr:key",
"md5": "cr:md5",
"parentField": "cr:parentField",
"path": "cr:path",
"personalSensitiveInformation": "cr:personalSensitiveInformation",
"recordSet": "cr:recordSet",
"references": "cr:references",
"regex": "cr:regex",
"repeated": "cr:repeated",
"replace": "cr:replace",
"sc": "https://schema.org/",
"separator": "cr:separator",
"source": "cr:source",
"subField": "cr:subField",
"transform": "cr:transform"
},
"@type": "sc:Dataset",
"distribution": [
{
"@type": "cr:FileObject",
"@id": "repo",
"name": "repo",
"description": "The Hugging Face git repository.",
"contentUrl": "https://huggingface.co./datasets/ibm/duorc/tree/refs%2Fconvert%2Fparquet",
"encodingFormat": "git+https",
"sha256": "https://github.com/mlcommons/croissant/issues/80"
},
{
"@type": "cr:FileSet",
"@id": "parquet-files-for-config-ParaphraseRC",
"name": "parquet-files-for-config-ParaphraseRC",
"description": "The underlying Parquet files as converted by Hugging Face (see: https://huggingface.co./docs/dataset-viewer/parquet).",
"containedIn": {
"@id": "repo"
},
"encodingFormat": "application/x-parquet",
"includes": "ParaphraseRC/*/*.parquet"
},
{
"@type": "cr:FileSet",
"@id": "parquet-files-for-config-SelfRC",
"name": "parquet-files-for-config-SelfRC",
"description": "The underlying Parquet files as converted by Hugging Face (see: https://huggingface.co./docs/dataset-viewer/parquet).",
"containedIn": {
"@id": "repo"
},
"encodingFormat": "application/x-parquet",
"includes": "SelfRC/*/*.parquet"
}
],
"recordSet": [
{
"@type": "cr:RecordSet",
"@id": "ParaphraseRC",
"name": "ParaphraseRC",
"description": "ibm/duorc - 'ParaphraseRC' subset\n\nAdditional information:\n- 3 splits: train, validation, test\n- 1 skipped column: answers",
"field": [
{
"@type": "cr:Field",
"@id": "ParaphraseRC/plot_id",
"name": "ParaphraseRC/plot_id",
"description": "Column 'plot_id' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-ParaphraseRC"
},
"extract": {
"column": "plot_id"
}
}
},
{
"@type": "cr:Field",
"@id": "ParaphraseRC/plot",
"name": "ParaphraseRC/plot",
"description": "Column 'plot' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-ParaphraseRC"
},
"extract": {
"column": "plot"
}
}
},
{
"@type": "cr:Field",
"@id": "ParaphraseRC/title",
"name": "ParaphraseRC/title",
"description": "Column 'title' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-ParaphraseRC"
},
"extract": {
"column": "title"
}
}
},
{
"@type": "cr:Field",
"@id": "ParaphraseRC/question_id",
"name": "ParaphraseRC/question_id",
"description": "Column 'question_id' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-ParaphraseRC"
},
"extract": {
"column": "question_id"
}
}
},
{
"@type": "cr:Field",
"@id": "ParaphraseRC/question",
"name": "ParaphraseRC/question",
"description": "Column 'question' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-ParaphraseRC"
},
"extract": {
"column": "question"
}
}
},
{
"@type": "cr:Field",
"@id": "ParaphraseRC/no_answer",
"name": "ParaphraseRC/no_answer",
"description": "Column 'no_answer' from the Hugging Face parquet file.",
"dataType": "sc:Boolean",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-ParaphraseRC"
},
"extract": {
"column": "no_answer"
}
}
}
]
},
{
"@type": "cr:RecordSet",
"@id": "SelfRC",
"name": "SelfRC",
"description": "ibm/duorc - 'SelfRC' subset\n\nAdditional information:\n- 3 splits: train, validation, test\n- 1 skipped column: answers",
"field": [
{
"@type": "cr:Field",
"@id": "SelfRC/plot_id",
"name": "SelfRC/plot_id",
"description": "Column 'plot_id' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-SelfRC"
},
"extract": {
"column": "plot_id"
}
}
},
{
"@type": "cr:Field",
"@id": "SelfRC/plot",
"name": "SelfRC/plot",
"description": "Column 'plot' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-SelfRC"
},
"extract": {
"column": "plot"
}
}
},
{
"@type": "cr:Field",
"@id": "SelfRC/title",
"name": "SelfRC/title",
"description": "Column 'title' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-SelfRC"
},
"extract": {
"column": "title"
}
}
},
{
"@type": "cr:Field",
"@id": "SelfRC/question_id",
"name": "SelfRC/question_id",
"description": "Column 'question_id' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-SelfRC"
},
"extract": {
"column": "question_id"
}
}
},
{
"@type": "cr:Field",
"@id": "SelfRC/question",
"name": "SelfRC/question",
"description": "Column 'question' from the Hugging Face parquet file.",
"dataType": "sc:Text",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-SelfRC"
},
"extract": {
"column": "question"
}
}
},
{
"@type": "cr:Field",
"@id": "SelfRC/no_answer",
"name": "SelfRC/no_answer",
"description": "Column 'no_answer' from the Hugging Face parquet file.",
"dataType": "sc:Boolean",
"source": {
"fileSet": {
"@id": "parquet-files-for-config-SelfRC"
},
"extract": {
"column": "no_answer"
}
}
}
]
}
],
"name": "duorc",
"description": "\n\t\n\t\t\n\t\n\t\n\t\tDataset Card for duorc\n\t\n\n\n\t\n\t\t\n\t\n\t\n\t\tDataset Summary\n\t\n\nThe DuoRC dataset is an English language dataset of questions and answers gathered from crowdsourced AMT workers on Wikipedia and IMDb movie plots. The workers were given freedom to pick answer from the plots or synthesize their own answers. It contains two sub-datasets - SelfRC and ParaphraseRC. SelfRC dataset is built on Wikipedia movie plots solely. ParaphraseRC has questions written from Wikipedia movie plots and the… See the full description on the dataset page: https://huggingface.co./datasets/ibm/duorc.",
"alternateName": [
"ibm/duorc",
"DuoRC"
],
"creator": {
"@type": "Organization",
"name": "IBM",
"url": "https://huggingface.co./ibm"
},
"keywords": [
"question-answering",
"text2text-generation",
"abstractive-qa",
"extractive-qa",
"crowdsourced",
"crowdsourced",
"monolingual",
"100K<n<1M",
"10K<n<100K",
"original",
"English",
"mit",
"Croissant",
"arxiv:1804.07927",
"🇺🇸 Region: US"
],
"license": "https://choosealicense.com/licenses/mit/",
"sameAs": "https://duorc.github.io/",
"url": "https://huggingface.co./datasets/ibm/duorc"
}
Load the dataset
To load the dataset, you can use the mlcroissant library. It provides a simple way to load datasets from Croissant metadata.
< > Update on GitHub