Text2Text Generation
Transformers
PyTorch
Japanese
mt5
Inference Endpoints
nreimers's picture
upload
5effea3
metadata
language: ja
datasets:
  - unicamp-dl/mmarco
widget:
  - text: >-
      Python(パイソン)はインタープリタ型の高水準汎用プログラミング言語である。グイド・ヴァン・ロッサムにより創り出され、1991年に最初にリリースされたPythonの設計哲学は、有意なホワイトスペース(オフサイドルール)の顕著な使用によってコードの可読性を重視している。その言語構成とオブジェクト指向のアプローチは、プログラマが小規模なプロジェクトから大規模なプロジェクトまで、明確で論理的なコードを書くのを支援することを目的としている。
license: apache-2.0

doc2query/msmarco-japanese-mt5-base-v1

This is a doc2query model based on mT5 (also known as docT5query).

It can be used for:

  • Document expansion: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our BEIR paper we showed that BM25+docT5query is a powerful search engine. In the BEIR repository we have an example how to use docT5query with Pyserini.
  • Domain Specific Training Data Generation: It can be used to generate training data to learn an embedding model. In our GPL-Paper / GPL Example on SBERT.net we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models.

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

model_name = 'doc2query/msmarco-japanese-mt5-base-v1'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

text = "Python(パイソン)はインタープリタ型の高水準汎用プログラミング言語である。グイド・ヴァン・ロッサムにより創り出され、1991年に最初にリリースされたPythonの設計哲学は、有意なホワイトスペース(オフサイドルール)の顕著な使用によってコードの可読性を重視している。その言語構成とオブジェクト指向のアプローチは、プログラマが小規模なプロジェクトから大規模なプロジェクトまで、明確で論理的なコードを書くのを支援することを目的としている。"


def create_queries(para):
    input_ids = tokenizer.encode(para, return_tensors='pt')
    with torch.no_grad():
        # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality
        sampling_outputs = model.generate(
            input_ids=input_ids,
            max_length=64,
            do_sample=True,
            top_p=0.95,
            top_k=10, 
            num_return_sequences=5
            )
        
        # Here we use Beam-search. It generates better quality queries, but with less diversity
        beam_outputs = model.generate(
            input_ids=input_ids, 
            max_length=64, 
            num_beams=5, 
            no_repeat_ngram_size=2, 
            num_return_sequences=5, 
            early_stopping=True
        )


    print("Paragraph:")
    print(para)
    
    print("\nBeam Outputs:")
    for i in range(len(beam_outputs)):
        query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True)
        print(f'{i + 1}: {query}')

    print("\nSampling Outputs:")
    for i in range(len(sampling_outputs)):
        query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True)
        print(f'{i + 1}: {query}')

create_queries(text)

Note: model.generate() is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it.

Training

This model fine-tuned google/mt5-base for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the train_script.py in this repository.

The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces.

This model was trained on a (query, passage) from the mMARCO dataset.