File size: 8,566 Bytes
500c4e8 be94b71 500c4e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
---
language:
- en
- ko
license: cc-by-nc-4.0
tags:
- dnotitia
- nlp
- llm
- slm
- conversation
- chat
base_model:
- dnotitia/Llama-DNA-1.0-8B-Instruct
library_name: transformers
pipeline_tag: text-generation
---
# DNA 1.0 8B Instruct
<br>
<p align="center">
<img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
</p>
<br>
## Introduction
We introduce **DNA 1.0 8B Instruct**, a state-of-the-art (**SOTA**) bilingual language model optimized for both Korean and English languages, developed and released by **Dnotitia Inc.** This model is based on the Llama architecture and has been meticulously enhanced through various advanced training techniques to excel in language understanding and generation tasks.
The DNA 1.0 8B Instruct model has undergone a sophisticated development process:
- **Model Merging via SLERP:** Combined with Llama 3.1 8B Instruct using spherical linear interpolation to enhance performance.
- **Knowledge Distillation (KD):** Utilizing Llama 3.1 405B as the teacher model to improve knowledge representation.
- **Continual Pre-Training (CPT):** Trained on a high-quality Korean dataset to boost language capabilities.
- **Supervised Fine-Tuning (SFT):** Aligned with human preferences through fine-tuning on curated data.
- **Direct Preference Optimization (DPO):** Enhanced instruction-following abilities for better user interaction.
Each model supports long-context processing of up to **131,072 tokens (128K)**, enabling it to handle extensive conversational histories and long documents effectively.
<br>
## Evaluation
We evaluated DNA 1.0 8B Instruct against other prominent language models of similar sizes across various benchmarks, including Korean-specific tasks and general language understanding metrics.
<br>
<table>
<tr>
<th>Language</th>
<th>Benchmark</th>
<th>dnotitia<br>DNA 1.0<br>8B Instruct</th>
<th>EXAONE 3.5<br>7.8B</th>
<th>Qwen 2.5<br>7B</th>
<th>Llama 3.1<br>8B</th>
<th>Mistral<br>7B</th>
</tr>
<tr>
<td rowspan="5">Korean</td>
<td>KMMLU</td>
<td align="center"><strong>53.26</strong></td>
<td align="center">45.30</td>
<td align="center">45.66</td>
<td align="center">41.66</td>
<td align="center">31.45</td>
</tr>
<tr>
<td>KMMLU-Hard</td>
<td align="center"><strong>29.46</strong></td>
<td align="center">23.17</td>
<td align="center">24.78</td>
<td align="center">20.49</td>
<td align="center">17.86</td>
</tr>
<tr>
<td>KoBEST</td>
<td align="center"><strong>83.40</strong></td>
<td align="center">79.05</td>
<td align="center">78.51</td>
<td align="center">67.56</td>
<td align="center">63.77</td>
</tr>
<tr>
<td>Belebele</td>
<td align="center"><strong>57.99</strong></td>
<td align="center">40.97</td>
<td align="center">54.85</td>
<td align="center">54.70</td>
<td align="center">40.31</td>
</tr>
<tr>
<td>CSAT QA</td>
<td align="center">43.32</td>
<td align="center">40.11</td>
<td align="center"><strong>45.45</strong></td>
<td align="center">36.90</td>
<td align="center">27.27</td>
</tr>
<tr>
<td rowspan="3">English</td>
<td>MMLU</td>
<td align="center">66.64</td>
<td align="center">65.27</td>
<td align="center"><strong>74.26</strong></td>
<td align="center">68.26</td>
<td align="center">62.04</td>
</tr>
<tr>
<td>MMLU Pro</td>
<td align="center"><strong>43.05</strong></td>
<td align="center">40.73</td>
<td align="center">42.50</td>
<td align="center">40.92</td>
<td align="center">33.49</td>
</tr>
<tr>
<td>GSM8K</td>
<td align="center"><strong>80.52</strong></td>
<td align="center">65.96</td>
<td align="center">75.74</td>
<td align="center">75.82</td>
<td align="center">49.66</td>
</tr>
</table>
- The **highest scores** are in **bold**.
<br>
**Evaluation Protocol**
For easy reproduction of our evaluation results, we list the evaluation tools and settings used below:
| Benchmark | Evaluation Setting | Metric | Evaluation Tool |
|-------------|--------------------|-------------------------------------|--------------------|
| KMMLU | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
| KMMLU-Hard | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
| KoBEST | 5-shot | `macro_avg` / `f1` | `lm-eval-harness` |
| Belebele | 0-shot | `accuracy` | `lm-eval-harness` |
| CSAT QA | 0-shot | `accuracy_normalized` | `lm-eval-harness` |
| MMLU | 5-shot | `macro_avg` / `accuracy` | `lm-eval-harness` |
| MMLU Pro | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
| GSM8K | 5-shot | `accuracy` / `exact_match` | `lm-eval-harness` |
<br>
## Quickstart
We offer weights in `F32`, `F16` formats and quantized weights in `Q8_0`, `Q6_K`, `Q5_K`, `Q4_K`, `Q3_K` and `Q2_K` formats.
You can download the GGUF weights as follows:
```bash
# Install huggingface_hub if not already installed
pip install huggingface_hub
# Download the GGUF weights
huggingface-cli download dnotitia/Llama-DNA-1.0-8B-Instruct-GGUF \
--include "DNA-1.0-8B-Instruct-Q8_0.gguf" \
--local-dir .
```
<br>
## Run Locally
For end users, we introduce two ways to run DNA 1.0 8B Instruct model locally.
> **Note**
>
> We recommend using a repetition penalty not exceeding 1.0 for better generation quality.
### llama.cpp
You can run DNA 1.0 8B Instruct model with `llama.cpp` as follows:
1. Install `llama.cpp`. Please refer to the [llama.cpp repository](https://github.com/ggerganov/llama.cpp) for more details.
2. Download DNA 1.0 8B Instruct model in GGUF format.
```bash
huggingface-cli download dnotitia/Llama-DNA-1.0-8B-Instruct-GGUF \
--include "DNA-1.0-8B-Instruct-BF16*.gguf" \
--local-dir .
```
3. Run the model with `llama.cpp` in conversational mode.
```bash
llama-cli -cnv -m ./DNA-1.0-8B-Instruct-BF16.gguf \
-p "You are a helpful assistant, Dnotitia DNA."
```
### Ollama
DNA 1.0 8B Instruct model is compatible with Ollama. You can use it as follows:
1. Install Ollama. Please refer to the [Ollama repository](https://github.com/ollama/ollama) for more details.
2. Create a `Modelfile` for DNA 1.0 8B Instruct.
```text
# Model path (choose appropriate GGUF weights)
FROM ./DNA-1.0-8B-Instruct-BF16.gguf
# Parameter values
PARAMETER stop "<|endoftext|>"
PARAMETER repeat_penalty 1.0
# PARAMETER num_ctx 131072 # if you need a long context
# Chat template
TEMPLATE """{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{ if eq .Role "system" }}[|system|]{{ .Content }}[|endoftext|]
{{ continue }}
{{ else if eq .Role "user" }}[|user|]{{ .Content }}
{{ else if eq .Role "assistant" }}[|assistant|]{{ .Content }}[|endoftext|]
{{ end }}
{{- if and (ne .Role "assistant") $last }}[|assistant|]{{ end }}
{{- end -}}"""
# System prompt
SYSTEM """You are a helpful assistant, Dnotitia DNA."""
# License
LICENSE """CC BY-NC 4.0"""
```
3. Convert the model to Ollama.
```bash
ollama create dna -f Modelfile
```
4. Run the model with Ollama.
```bash
ollama run dna
```
<br>
## Limitations
While DNA 1.0 8B Instruct demonstrates strong performance, users should be aware of the following limitations:
- The model may occasionally generate biased or inappropriate content.
- Responses are based on training data and may not reflect current information.
- The model may sometimes produce factually incorrect or inconsistent answers.
- Performance may vary depending on the complexity and domain of the task.
- Generated content should be reviewed for accuracy and appropriateness.
<br>
## License
The model is released under the [CC BY-NC 4.0 license](./LICENSE). For commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).
<br>
## Citation
If you use or discuss this model in your academic research, please cite the project to help spread awareness:
```
@article{dnotitiadna2024,
title = {Dnotitia DNA 1.0 8B Instruct},
author = {Jungyup Lee, Jemin Kim, Sang Park, Seungjae Lee},
year = {2024},
url = {https://huggingface.co./dnotitia/DNA-1.0-8B-Instruct},
version = {1.0},
}
```
<br>
## Contact
For technical support and inquiries: [Contact us](https://www.dnotitia.com/contact/post-form) |