likejazz commited on
Commit
500c4e8
·
verified ·
1 Parent(s): 5bd61bf

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +294 -0
README.md ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ko
5
+ license: cc-by-nc-4.0
6
+ tags:
7
+ - dnotitia
8
+ - nlp
9
+ - llm
10
+ - slm
11
+ - conversation
12
+ - chat
13
+ base_model:
14
+ - meta-llama/Meta-Llama-3.1-8B
15
+ library_name: transformers
16
+ pipeline_tag: text-generation
17
+ ---
18
+
19
+ # DNA 1.0 8B Instruct
20
+ <br>
21
+ <p align="center">
22
+ <img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
23
+ </p>
24
+ <br>
25
+
26
+ ## Introduction
27
+
28
+ We introduce **DNA 1.0 8B Instruct**, a state-of-the-art (**SOTA**) bilingual language model optimized for both Korean and English languages, developed and released by **Dnotitia Inc.** This model is based on the Llama architecture and has been meticulously enhanced through various advanced training techniques to excel in language understanding and generation tasks.
29
+
30
+ The DNA 1.0 8B Instruct model has undergone a sophisticated development process:
31
+
32
+ - **Model Merging via SLERP:** Combined with Llama 3.1 8B Instruct using spherical linear interpolation to enhance performance.
33
+ - **Knowledge Distillation (KD):** Utilizing Llama 3.1 405B as the teacher model to improve knowledge representation.
34
+ - **Continual Pre-Training (CPT):** Trained on a high-quality Korean dataset to boost language capabilities.
35
+ - **Supervised Fine-Tuning (SFT):** Aligned with human preferences through fine-tuning on curated data.
36
+ - **Direct Preference Optimization (DPO):** Enhanced instruction-following abilities for better user interaction.
37
+
38
+ Each model supports long-context processing of up to **131,072 tokens (128K)**, enabling it to handle extensive conversational histories and long documents effectively.
39
+
40
+ Our documentation consists of the following sections:
41
+
42
+ - [Evaluation](#evaluation): Experimental results of DNA 1.0 8B Instruct.
43
+ - [Quickstart](#quickstart): A basic guide to using DNA 1.0 8B Instruct with Transformers.
44
+ - [Quantized Models](#quantized-models): An explanation of quantized DNA 1.0 8B Instruct weights in `GGUF` format.
45
+ - [Run Locally](#run-locally): Guides to running DNA 1.0 8B Instruct locally with `llama.cpp` and `Ollama` frameworks.
46
+ - [Deployment](#deployment): Guides to deploying DNA 1.0 8B Instruct with `vLLM` and `SGLang` frameworks.
47
+
48
+ <br>
49
+
50
+ ## News
51
+
52
+ - **2024.12.10**: Released DNA 1.0 8B Instruct model. Try DNA-powered Mnemos Assistant! 👉 [Beta Open](https://request-demo.dnotitia.ai/)
53
+ - **2024.12.15**: Released GGUF quantized versions of DNA 1.0 8B Instruct model.
54
+
55
+ <br>
56
+
57
+ ## Evaluation
58
+
59
+ We evaluated DNA 1.0 8B Instruct against other prominent language models of similar sizes across various benchmarks, including Korean-specific tasks and general language understanding metrics.
60
+
61
+ <br>
62
+
63
+ <table>
64
+ <tr>
65
+ <th>Language</th>
66
+ <th>Benchmark</th>
67
+ <th>dnotitia<br>DNA 1.0<br>8B Instruct</th>
68
+ <th>EXAONE 3.5<br>7.8B</th>
69
+ <th>Qwen 2.5<br>7B</th>
70
+ <th>Llama 3.1<br>8B</th>
71
+ <th>Mistral<br>7B</th>
72
+ </tr>
73
+ <tr>
74
+ <td rowspan="5">Korean</td>
75
+ <td>KMMLU</td>
76
+ <td align="center"><strong>53.26</strong></td>
77
+ <td align="center">45.30</td>
78
+ <td align="center">45.66</td>
79
+ <td align="center">41.66</td>
80
+ <td align="center">31.45</td>
81
+ </tr>
82
+ <tr>
83
+ <td>KMMLU-Hard</td>
84
+ <td align="center"><strong>29.46</strong></td>
85
+ <td align="center">23.17</td>
86
+ <td align="center">24.78</td>
87
+ <td align="center">20.49</td>
88
+ <td align="center">17.86</td>
89
+ </tr>
90
+ <tr>
91
+ <td>KoBEST</td>
92
+ <td align="center"><strong>83.40</strong></td>
93
+ <td align="center">79.05</td>
94
+ <td align="center">78.51</td>
95
+ <td align="center">67.56</td>
96
+ <td align="center">63.77</td>
97
+ </tr>
98
+ <tr>
99
+ <td>Belebele</td>
100
+ <td align="center"><strong>57.99</strong></td>
101
+ <td align="center">40.97</td>
102
+ <td align="center">54.85</td>
103
+ <td align="center">54.70</td>
104
+ <td align="center">40.31</td>
105
+ </tr>
106
+ <tr>
107
+ <td>CSAT QA</td>
108
+ <td align="center">43.32</td>
109
+ <td align="center">40.11</td>
110
+ <td align="center"><strong>45.45</strong></td>
111
+ <td align="center">36.90</td>
112
+ <td align="center">27.27</td>
113
+ </tr>
114
+ <tr>
115
+ <td rowspan="3">English</td>
116
+ <td>MMLU</td>
117
+ <td align="center">66.64</td>
118
+ <td align="center">65.27</td>
119
+ <td align="center"><strong>74.26</strong></td>
120
+ <td align="center">68.26</td>
121
+ <td align="center">62.04</td>
122
+ </tr>
123
+ <tr>
124
+ <td>MMLU Pro</td>
125
+ <td align="center"><strong>43.05</strong></td>
126
+ <td align="center">40.73</td>
127
+ <td align="center">42.50</td>
128
+ <td align="center">40.92</td>
129
+ <td align="center">33.49</td>
130
+ </tr>
131
+ <tr>
132
+ <td>GSM8K</td>
133
+ <td align="center"><strong>80.52</strong></td>
134
+ <td align="center">65.96</td>
135
+ <td align="center">75.74</td>
136
+ <td align="center">75.82</td>
137
+ <td align="center">49.66</td>
138
+ </tr>
139
+ </table>
140
+
141
+ - The **highest scores** are in **bold**.
142
+
143
+ <br>
144
+
145
+ **Evaluation Protocol**
146
+
147
+ For easy reproduction of our evaluation results, we list the evaluation tools and settings used below:
148
+
149
+ | Benchmark | Evaluation Setting | Metric | Evaluation Tool |
150
+ |-------------|--------------------|-------------------------------------|--------------------|
151
+ | KMMLU | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
152
+ | KMMLU-Hard | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
153
+ | KoBEST | 5-shot | `macro_avg` / `f1` | `lm-eval-harness` |
154
+ | Belebele | 0-shot | `accuracy` | `lm-eval-harness` |
155
+ | CSAT QA | 0-shot | `accuracy_normalized` | `lm-eval-harness` |
156
+ | MMLU | 5-shot | `macro_avg` / `accuracy` | `lm-eval-harness` |
157
+ | MMLU Pro | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
158
+ | GSM8K | 5-shot | `accuracy` / `exact_match` | `lm-eval-harness` |
159
+
160
+ <br>
161
+
162
+ ## Quickstart
163
+
164
+ We offer weights in `F32`, `F16` formats and quantized weights in `Q8_0`, `Q6_K`, `Q5_K`, `Q4_K`, `Q3_K` and `Q2_K` formats.
165
+
166
+ You can download the GGUF weights as follows:
167
+
168
+ ```bash
169
+ # Install huggingface_hub if not already installed
170
+ pip install huggingface_hub
171
+
172
+ # Download the GGUF weights
173
+ huggingface-cli download dnotitia/Llama-DNA-1.0-8B-Instruct-GGUF \
174
+ --include "DNA-1.0-8B-Instruct-Q8_0.gguf" \
175
+ --local-dir .
176
+ ```
177
+
178
+ <br>
179
+
180
+ ## Run Locally
181
+
182
+ For end users, we introduce two ways to run DNA 1.0 8B Instruct model locally.
183
+
184
+ > **Note**
185
+ >
186
+ > We recommend using a repetition penalty not exceeding 1.0 for better generation quality.
187
+
188
+ ### llama.cpp
189
+
190
+ You can run DNA 1.0 8B Instruct model with `llama.cpp` as follows:
191
+
192
+ 1. Install `llama.cpp`. Please refer to the [llama.cpp repository](https://github.com/ggerganov/llama.cpp) for more details.
193
+
194
+ 2. Download DNA 1.0 8B Instruct model in GGUF format.
195
+
196
+ ```bash
197
+ huggingface-cli download dnotitia/Llama-DNA-1.0-8B-Instruct-GGUF \
198
+ --include "DNA-1.0-8B-Instruct-BF16*.gguf" \
199
+ --local-dir .
200
+ ```
201
+
202
+ 3. Run the model with `llama.cpp` in conversational mode.
203
+
204
+ ```bash
205
+ llama-cli -cnv -m ./DNA-1.0-8B-Instruct-BF16.gguf \
206
+ -p "You are a helpful assistant, Dnotitia DNA."
207
+ ```
208
+
209
+ ### Ollama
210
+
211
+ DNA 1.0 8B Instruct model is compatible with Ollama. You can use it as follows:
212
+
213
+ 1. Install Ollama. Please refer to the [Ollama repository](https://github.com/ollama/ollama) for more details.
214
+
215
+ 2. Create a `Modelfile` for DNA 1.0 8B Instruct.
216
+
217
+ ```text
218
+ # Model path (choose appropriate GGUF weights)
219
+ FROM ./DNA-1.0-8B-Instruct-BF16.gguf
220
+
221
+ # Parameter values
222
+ PARAMETER stop "<|endoftext|>"
223
+ PARAMETER repeat_penalty 1.0
224
+ # PARAMETER num_ctx 131072 # if you need a long context
225
+
226
+ # Chat template
227
+ TEMPLATE """{{- range $i, $_ := .Messages }}
228
+ {{- $last := eq (len (slice $.Messages $i)) 1 -}}
229
+ {{ if eq .Role "system" }}[|system|]{{ .Content }}[|endoftext|]
230
+ {{ continue }}
231
+ {{ else if eq .Role "user" }}[|user|]{{ .Content }}
232
+ {{ else if eq .Role "assistant" }}[|assistant|]{{ .Content }}[|endoftext|]
233
+ {{ end }}
234
+ {{- if and (ne .Role "assistant") $last }}[|assistant|]{{ end }}
235
+ {{- end -}}"""
236
+
237
+ # System prompt
238
+ SYSTEM """You are a helpful assistant, Dnotitia DNA."""
239
+
240
+ # License
241
+ LICENSE """CC BY-NC 4.0"""
242
+ ```
243
+
244
+ 3. Convert the model to Ollama.
245
+
246
+ ```bash
247
+ ollama create dna -f Modelfile
248
+ ```
249
+
250
+ 4. Run the model with Ollama.
251
+
252
+ ```bash
253
+ ollama run dna
254
+ ```
255
+
256
+ <br>
257
+
258
+ ## Limitations
259
+
260
+ While DNA 1.0 8B Instruct demonstrates strong performance, users should be aware of the following limitations:
261
+
262
+ - The model may occasionally generate biased or inappropriate content.
263
+ - Responses are based on training data and may not reflect current information.
264
+ - The model may sometimes produce factually incorrect or inconsistent answers.
265
+ - Performance may vary depending on the complexity and domain of the task.
266
+ - Generated content should be reviewed for accuracy and appropriateness.
267
+
268
+ <br>
269
+
270
+ ## License
271
+
272
+ The model is released under the [CC BY-NC 4.0 license](./LICENSE). For commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).
273
+
274
+ <br>
275
+
276
+ ## Citation
277
+
278
+ If you use or discuss this model in your academic research, please cite the project to help spread awareness:
279
+
280
+ ```
281
+ @article{dnotitiadna2024,
282
+ title = {Dnotitia DNA 1.0 8B Instruct},
283
+ author = {Jungyup Lee, Jemin Kim, Sang Park, Seungjae Lee},
284
+ year = {2024},
285
+ url = {https://huggingface.co/dnotitia/DNA-1.0-8B-Instruct},
286
+ version = {1.0},
287
+ }
288
+ ```
289
+
290
+ <br>
291
+
292
+ ## Contact
293
+
294
+ For technical support and inquiries: [Contact us](https://www.dnotitia.com/contact/post-form)