|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_7_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-luganda-CV-train-validation-7.0 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_7_0 |
|
type: common_voice_7_0 |
|
config: lg |
|
split: test |
|
args: lg |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.1933150003273751 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-luganda-CV-train-validation-7.0 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co./facebook/w2v-bert-2.0) on the Luganda mozilla common voices 7.0 dataset. We use the train and validation set for training and the test set for evaluation. |
|
When using this dataset, make sure that the audio has a sampling rate of 16kHz.It achieves the following results on the test set: |
|
- Loss: 0.2282 |
|
- Wer: 0.1933 |
|
|
|
## Training and evaluation data |
|
|
|
The model was trained on version 7 of the Luganda dataset of Mozilla common voices dataset. We used the train and validation set for training and the test dataset for validation. The [training script](https://github.com/MusinguziDenis/Luganda-ASR/blob/main/wav2vec/notebook/Fine_Tune_W2V2_BERT_on_CV7_Luganda.ipynb) was adapted from this [transformers repo](https://huggingface.co./blog/fine-tune-w2v2-bert). |
|
|
|
## Training procedure |
|
We trained the model on a 32 GB V100 GPU for 10 epochs using a learning rate of 5e-05. We used the AdamW optimizer. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 1.1859 | 1.89 | 300 | 0.2854 | 0.2866 | |
|
| 0.1137 | 3.77 | 600 | 0.2503 | 0.2469 | |
|
| 0.0712 | 5.66 | 900 | 0.2043 | 0.2092 | |
|
| 0.0446 | 7.55 | 1200 | 0.2156 | 0.2005 | |
|
| 0.0269 | 9.43 | 1500 | 0.2282 | 0.1933 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|
|
### Usage |
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor |
|
|
|
test_dataset = load_dataset("common_voice", "lg", split="test[:10]") |
|
|
|
model = AutoModelForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0") |
|
processor = Wav2Vec2BertProcessor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
### Evaluation |
|
|
|
The model can be evaluated as follows on the Luganda test dataset. |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor |
|
import re |
|
|
|
test_dataset = load_dataset("common_voice", "lg", split="test") |
|
wer = load_metric("wer") |
|
|
|
model = AutoModelForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0").to('cuda') |
|
processor = Wav2Vec2BertProcessor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0") |
|
|
|
chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\»\«]' |
|
|
|
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000)) |
|
|
|
def remove_special_characters(batch): |
|
# remove special characters |
|
batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower() |
|
|
|
return batch |
|
|
|
test_dataset = test_dataset.map(remove_special_characters) |
|
|
|
def prepare_dataset(batch): |
|
audio = batch["audio"] |
|
batch["input_features"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] |
|
batch["input_length"] = len(batch["input_features"]) |
|
|
|
batch["labels"] = processor(text=batch["sentence"]).input_ids |
|
return batch |
|
|
|
test_dataset = test_dataset.map(prepare_dataset, remove_columns=test_dataset.column_names) |
|
|
|
# Evaluation is carried out with a batch size of 1 |
|
def map_to_result(batch): |
|
with torch.no_grad(): |
|
input_values = torch.tensor(batch["input_features"], device="cuda").unsqueeze(0) |
|
logits = model(input_values).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_str"] = processor.batch_decode(pred_ids)[0] |
|
batch["text"] = processor.decode(batch["labels"], group_tokens=False) |
|
|
|
return batch |
|
|
|
results = test_dataset.map(map_to_result) |
|
|
|
print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["text"]))) |
|
``` |
|
|
|
### Test Result: 19.33% |
|
|
|
|