|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: SEMEVAL23_TASK3_SUBTASK1_MULTI |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SEMEVAL23_TASK3_SUBTASK1_MULTI |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6313 |
|
- F1: 0.6299 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.9669 | 1.0 | 160 | 0.9574 | 0.4075 | |
|
| 0.4214 | 2.0 | 320 | 0.6809 | 0.5769 | |
|
| 0.0096 | 3.0 | 480 | 1.3114 | 0.4152 | |
|
| 0.2681 | 4.0 | 640 | 0.7792 | 0.6122 | |
|
| 0.0007 | 5.0 | 800 | 1.3213 | 0.5765 | |
|
| 0.0005 | 6.0 | 960 | 1.7983 | 0.5749 | |
|
| 0.0011 | 7.0 | 1120 | 2.2000 | 0.5298 | |
|
| 0.0008 | 8.0 | 1280 | 1.3757 | 0.5812 | |
|
| 0.0007 | 9.0 | 1440 | 1.5493 | 0.5990 | |
|
| 0.001 | 10.0 | 1600 | 1.4796 | 0.6233 | |
|
| 0.0008 | 11.0 | 1760 | 1.4954 | 0.6251 | |
|
| 0.0002 | 12.0 | 1920 | 1.6313 | 0.6299 | |
|
| 0.0004 | 13.0 | 2080 | 1.5037 | 0.6296 | |
|
| 0.0008 | 14.0 | 2240 | 1.5526 | 0.6277 | |
|
| 0.0001 | 15.0 | 2400 | 1.5745 | 0.6254 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|