dlantonia's picture
End of training
fcba699 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
datasets:
  - UrbanSounds/UrbanSoundsNew
metrics:
  - accuracy
model-index:
  - name: hubert-base-ls960-finetuned-urbansound
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: urbansound
          type: UrbanSounds/UrbanSoundsNew
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6086956521739131

hubert-base-ls960-finetuned-urbansound

This model is a fine-tuned version of facebook/hubert-base-ls960 on the urbansound dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1907
  • Accuracy: 0.6087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.133 1.0 50 2.1532 0.2609
2.0878 2.0 100 2.0094 0.3478
1.8873 3.0 150 1.8741 0.2609
1.6437 4.0 200 1.5861 0.4783
1.5457 5.0 250 1.4944 0.4783
1.181 6.0 300 1.4003 0.5217
1.2324 7.0 350 1.2538 0.5217
0.9965 8.0 400 1.1745 0.5217
1.26 9.0 450 1.1725 0.6087
1.0922 10.0 500 1.1907 0.6087

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0