djbp's picture
End of training
24a52ca verified
|
raw
history blame
2.42 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-Mid-NonMidMarket-Classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3924731182795699

swin-tiny-patch4-window7-224-Mid-NonMidMarket-Classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0567
  • Accuracy: 0.3925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8889 6 2.8975 0.1398
2.9658 1.9259 13 2.6866 0.2204
2.6529 2.9630 20 2.4370 0.3011
2.6529 4.0 27 2.2516 0.3495
2.3311 4.8889 33 2.1685 0.3710
2.1441 5.9259 40 2.0987 0.3656
2.1441 6.9630 47 2.0567 0.3925
2.0507 8.0 54 2.0416 0.3871
1.988 8.8889 60 2.0368 0.3763

Framework versions

  • Transformers 4.41.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1