Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Meta-Llama-3-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f971d59dc55e2c3d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f971d59dc55e2c3d_train_data.json
  type:
    field_instruction: related_work
    field_output: abstract
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: dixedus/f0b19750-dc9f-47c4-ac13-44f019fe23f5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/f971d59dc55e2c3d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: af312f24-2fb0-4971-97c7-b836a1dbcff6
wandb_project: Gradients-On-Eight
wandb_run: your_name
wandb_runid: af312f24-2fb0-4971-97c7-b836a1dbcff6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

f0b19750-dc9f-47c4-ac13-44f019fe23f5

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0008 1 2.3232
2.2681 0.0075 9 2.2779
2.1871 0.0150 18 2.2337
2.2335 0.0225 27 2.2121
2.1659 0.0300 36 2.2060
2.2261 0.0375 45 2.2031
2.165 0.0450 54 2.2007
2.2094 0.0525 63 2.1987
2.197 0.0600 72 2.1975
2.2036 0.0675 81 2.1969
2.2097 0.0750 90 2.1966
2.1793 0.0825 99 2.1965

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for dixedus/f0b19750-dc9f-47c4-ac13-44f019fe23f5

Adapter
(246)
this model