File size: 4,842 Bytes
20fe92b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
---
base_model: gpt2
datasets:
- wikimedia/wikipedia
library_name: Distily
license: mit
tags:
- bitnet
- 1.58b
- generated_from_trainer
model-index:
- name: verify_v0.3.0
results: []
---
# Summary
Distilled with [Distily](https://github.com/lapp0/distily) library
using teacher model [gpt2](https://huggingface.co./gpt2)
on dataset [wikimedia/wikipedia](https://huggingface.co./datasets/wikimedia/wikipedia).
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.
# Model description
More information needed
# Intended uses & limitations
More information needed
-->
# Model Architecture:
- **Architecture**: `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808
- **Data Type (dtype)**: torch.bfloat16
- **Model Size**: 0.24 GB
# Benchmark Metrics Comparison
| Metric | dataset_sample_size=1000 | teacher |
| :--- | :--- | :--- |
| ai2_arc (acc) | 0.225 | 0.304 |
| ai2_arc (acc_norm) | 0.251 | 0.309 |
| ai2_arc (acc_norm_stderr) | | 0.01 |
| ai2_arc (acc_stderr) | | 0.01 |
| arc_challenge (acc) | 0.182 | 0.184 |
| arc_challenge (acc_norm) | 0.223 | 0.214 |
| arc_challenge (acc_norm_stderr) | | 0.013 |
| arc_challenge (acc_stderr) | | 0.012 |
| arc_easy (acc) | 0.268 | 0.424 |
| arc_easy (acc_norm) | 0.278 | 0.405 |
| arc_easy (acc_norm_stderr) | | 0.016 |
| arc_easy (acc_stderr) | | 0.016 |
| boolq (acc) | 0.375 | 0.541 |
| boolq (acc_stderr) | | 0.016 |
| cola (mcc) | 0.0 | 0.009 |
| cola (mcc_stderr) | | 0.032 |
| glue (acc) | 0.477 | 0.41 |
| glue (acc_stderr) | | 0.006 |
| glue (f1) | 0.0 | 0.526 |
| glue (f1_stderr) | | 0.014 |
| glue (mcc) | 0.0 | 0.009 |
| glue (mcc_stderr) | | 0.032 |
| hellaswag (acc) | 0.287 | 0.337 |
| hellaswag (acc_norm) | 0.269 | 0.384 |
| hellaswag (acc_norm_stderr) | | 0.015 |
| hellaswag (acc_stderr) | | 0.015 |
| mnli (acc) | 0.335 | 0.323 |
| mnli (acc_stderr) | | 0.015 |
| mnli_mismatch (acc) | 0.357 | 0.344 |
| mnli_mismatch (acc_stderr) | | 0.015 |
| mrpc (acc) | 0.316 | 0.515 |
| mrpc (acc_stderr) | | 0.025 |
| mrpc (f1) | 0.0 | 0.631 |
| mrpc (f1_stderr) | | 0.024 |
| qnli (acc) | 0.527 | 0.472 |
| qnli (acc_stderr) | | 0.016 |
| qqp (acc) | 0.673 | 0.34 |
| qqp (acc_stderr) | | 0.015 |
| qqp (f1) | 0.0 | 0.483 |
| qqp (f1_stderr) | | 0.017 |
| rte (acc) | 0.527 | 0.516 |
| rte (acc_stderr) | | 0.03 |
| sst2 (acc) | 0.557 | 0.511 |
| sst2 (acc_stderr) | | 0.017 |
| wikitext (bits_per_byte) | 1.979 | |
| wikitext (byte_perplexity) | 3.942 | |
| wikitext (word_perplexity) | 1533.0 | |
| wnli (acc) | 0.437 | 0.451 |
| wnli (acc_stderr) | | 0.059 |
# Resource Usage Comparison
- VRAM Use: 7.4923 GB
# Distillation (Teacher -> Student) Architecture Difference:
- **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808 -> 124,439,808
- **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16
- **Model Size**: 0.24 GB -> 0.24 GB
<details>
<summary>Module Diff Details</summary>
```diff
```
</details>
<br/>
# Train Dataset
Trained on 923,203 tokens from the [wikimedia/wikipedia](https://huggingface.co./datasets/wikimedia/wikipedia) dataset.
- Num Samples: `990`
- Subset: `20231101.en`
- Split: `train`
# Training Objective
```
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
```
# Hyperparameters
The following hyperparameters were used during training:
<details>
<summary>Expand</summary>
- learning_rate: `0.0001`
- train_batch_size: `4`
- eval_batch_size: `8`
- seed: `42`
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
- lr_scheduler_type: `constant`
- lr_scheduler_warmup_ratio: `0.2`
- num_epochs: `1.0`
- distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))`
- train_embeddings: `True`
- lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x7ff7e81bb7c0>`
- student_model_name_or_path: `None`
- student_config_name_or_path: `None`
- student_model_config: `None`
- reinitialize_weights: `None`
- copy_teacher_modules: `[('lm_head', False)]`
- student_model_as_bitnet: `True`
- student_model_compile: `False`
- dropout: `None`
- teacher_model_name_or_path: `gpt2`
- teacher_load_in_8bit: `False`
- teacher_load_in_4bit: `False`
- teacher_model_compile: `False`
- dataset_uri: `wikimedia/wikipedia`
- dataset_subset: `20231101.en`
- dataset_split: `train`
- dataset_column_name: `text`
- dataset_sample_size: `1000`
- dataset_test_size: `0.01`
- gradient_accumulation_steps: `1`
- weight_decay: `0.0`
- max_grad_norm: `1.0`
- warmup_ratio: `0.2`
- warmup_steps: `0`
- gradient_checkpointing: `True`
</details>
<br/>
# Framework Versions
- Distily 0.3.0
- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 2.21.0
|