File size: 4,842 Bytes
20fe92b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
base_model: gpt2
datasets:
- wikimedia/wikipedia
library_name: Distily
license: mit
tags:
- bitnet
- 1.58b
- generated_from_trainer
model-index:
- name: verify_v0.3.0
  results: []
---


# Summary

Distilled with [Distily](https://github.com/lapp0/distily) library
using teacher model [gpt2](https://huggingface.co./gpt2)
on dataset [wikimedia/wikipedia](https://huggingface.co./datasets/wikimedia/wikipedia).

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.

# Model description

More information needed

# Intended uses & limitations

More information needed
-->

# Model Architecture:
- **Architecture**: `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808
- **Data Type (dtype)**: torch.bfloat16
- **Model Size**: 0.24 GB


# Benchmark Metrics Comparison

| Metric | dataset_sample_size=1000 | teacher |
| :--- | :--- | :--- |
| ai2_arc (acc) | 0.225 | 0.304 |
| ai2_arc (acc_norm) | 0.251 | 0.309 |
| ai2_arc (acc_norm_stderr) |  | 0.01 |
| ai2_arc (acc_stderr) |  | 0.01 |
| arc_challenge (acc) | 0.182 | 0.184 |
| arc_challenge (acc_norm) | 0.223 | 0.214 |
| arc_challenge (acc_norm_stderr) |  | 0.013 |
| arc_challenge (acc_stderr) |  | 0.012 |
| arc_easy (acc) | 0.268 | 0.424 |
| arc_easy (acc_norm) | 0.278 | 0.405 |
| arc_easy (acc_norm_stderr) |  | 0.016 |
| arc_easy (acc_stderr) |  | 0.016 |
| boolq (acc) | 0.375 | 0.541 |
| boolq (acc_stderr) |  | 0.016 |
| cola (mcc) | 0.0 | 0.009 |
| cola (mcc_stderr) |  | 0.032 |
| glue (acc) | 0.477 | 0.41 |
| glue (acc_stderr) |  | 0.006 |
| glue (f1) | 0.0 | 0.526 |
| glue (f1_stderr) |  | 0.014 |
| glue (mcc) | 0.0 | 0.009 |
| glue (mcc_stderr) |  | 0.032 |
| hellaswag (acc) | 0.287 | 0.337 |
| hellaswag (acc_norm) | 0.269 | 0.384 |
| hellaswag (acc_norm_stderr) |  | 0.015 |
| hellaswag (acc_stderr) |  | 0.015 |
| mnli (acc) | 0.335 | 0.323 |
| mnli (acc_stderr) |  | 0.015 |
| mnli_mismatch (acc) | 0.357 | 0.344 |
| mnli_mismatch (acc_stderr) |  | 0.015 |
| mrpc (acc) | 0.316 | 0.515 |
| mrpc (acc_stderr) |  | 0.025 |
| mrpc (f1) | 0.0 | 0.631 |
| mrpc (f1_stderr) |  | 0.024 |
| qnli (acc) | 0.527 | 0.472 |
| qnli (acc_stderr) |  | 0.016 |
| qqp (acc) | 0.673 | 0.34 |
| qqp (acc_stderr) |  | 0.015 |
| qqp (f1) | 0.0 | 0.483 |
| qqp (f1_stderr) |  | 0.017 |
| rte (acc) | 0.527 | 0.516 |
| rte (acc_stderr) |  | 0.03 |
| sst2 (acc) | 0.557 | 0.511 |
| sst2 (acc_stderr) |  | 0.017 |
| wikitext (bits_per_byte) | 1.979 |  |
| wikitext (byte_perplexity) | 3.942 |  |
| wikitext (word_perplexity) | 1533.0 |  |
| wnli (acc) | 0.437 | 0.451 |
| wnli (acc_stderr) |  | 0.059 |

# Resource Usage Comparison

- VRAM Use: 7.4923 GB

# Distillation (Teacher -> Student) Architecture Difference:

- **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808 -> 124,439,808
- **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16
- **Model Size**: 0.24 GB -> 0.24 GB

<details>
<summary>Module Diff Details</summary>

```diff

```

</details>
<br/>

# Train Dataset
Trained on 923,203 tokens from the [wikimedia/wikipedia](https://huggingface.co./datasets/wikimedia/wikipedia) dataset.

- Num Samples: `990`
- Subset: `20231101.en`
- Split: `train`


# Training Objective

```
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
```

# Hyperparameters
The following hyperparameters were used during training:

<details>
<summary>Expand</summary>

- learning_rate: `0.0001`
- train_batch_size: `4`
- eval_batch_size: `8`
- seed: `42`
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
- lr_scheduler_type: `constant`
- lr_scheduler_warmup_ratio: `0.2`
- num_epochs: `1.0`
- distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))`
- train_embeddings: `True`
- lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x7ff7e81bb7c0>`
- student_model_name_or_path: `None`
- student_config_name_or_path: `None`
- student_model_config: `None`
- reinitialize_weights: `None`
- copy_teacher_modules: `[('lm_head', False)]`
- student_model_as_bitnet: `True`
- student_model_compile: `False`
- dropout: `None`
- teacher_model_name_or_path: `gpt2`
- teacher_load_in_8bit: `False`
- teacher_load_in_4bit: `False`
- teacher_model_compile: `False`
- dataset_uri: `wikimedia/wikipedia`
- dataset_subset: `20231101.en`
- dataset_split: `train`
- dataset_column_name: `text`
- dataset_sample_size: `1000`
- dataset_test_size: `0.01`
- gradient_accumulation_steps: `1`
- weight_decay: `0.0`
- max_grad_norm: `1.0`
- warmup_ratio: `0.2`
- warmup_steps: `0`
- gradient_checkpointing: `True`

</details>
<br/>


# Framework Versions
- Distily 0.3.0
- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 2.21.0