Summary

Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.

Model Architecture:

  • Architecture: GPT2LMHeadModel
  • Total Parameters: 124,439,808
  • Data Type (dtype): torch.bfloat16
  • Model Size: 0.24 GB

Benchmark Metrics Comparison

Metric dataset_sample_size=1000 teacher
ai2_arc (acc) 0.225 0.304
ai2_arc (acc_norm) 0.251 0.309
ai2_arc (acc_norm_stderr) 0.01
ai2_arc (acc_stderr) 0.01
arc_challenge (acc) 0.182 0.184
arc_challenge (acc_norm) 0.223 0.214
arc_challenge (acc_norm_stderr) 0.013
arc_challenge (acc_stderr) 0.012
arc_easy (acc) 0.268 0.424
arc_easy (acc_norm) 0.278 0.405
arc_easy (acc_norm_stderr) 0.016
arc_easy (acc_stderr) 0.016
boolq (acc) 0.375 0.541
boolq (acc_stderr) 0.016
cola (mcc) 0.0 0.009
cola (mcc_stderr) 0.032
glue (acc) 0.477 0.41
glue (acc_stderr) 0.006
glue (f1) 0.0 0.526
glue (f1_stderr) 0.014
glue (mcc) 0.0 0.009
glue (mcc_stderr) 0.032
hellaswag (acc) 0.287 0.337
hellaswag (acc_norm) 0.269 0.384
hellaswag (acc_norm_stderr) 0.015
hellaswag (acc_stderr) 0.015
mnli (acc) 0.335 0.323
mnli (acc_stderr) 0.015
mnli_mismatch (acc) 0.357 0.344
mnli_mismatch (acc_stderr) 0.015
mrpc (acc) 0.316 0.515
mrpc (acc_stderr) 0.025
mrpc (f1) 0.0 0.631
mrpc (f1_stderr) 0.024
qnli (acc) 0.527 0.472
qnli (acc_stderr) 0.016
qqp (acc) 0.673 0.34
qqp (acc_stderr) 0.015
qqp (f1) 0.0 0.483
qqp (f1_stderr) 0.017
rte (acc) 0.527 0.516
rte (acc_stderr) 0.03
sst2 (acc) 0.557 0.511
sst2 (acc_stderr) 0.017
wikitext (bits_per_byte) 1.979
wikitext (byte_perplexity) 3.942
wikitext (word_perplexity) 1533.0
wnli (acc) 0.437 0.451
wnli (acc_stderr) 0.059

Resource Usage Comparison

  • VRAM Use: 7.4923 GB

Distillation (Teacher -> Student) Architecture Difference:

  • Architecture: GPT2LMHeadModel -> GPT2LMHeadModel
  • Total Parameters: 124,439,808 -> 124,439,808
  • Data Type (dtype): torch.bfloat16 -> torch.bfloat16
  • Model Size: 0.24 GB -> 0.24 GB
Module Diff Details


Train Dataset

Trained on 923,203 tokens from the wikimedia/wikipedia dataset.

  • Num Samples: 990
  • Subset: 20231101.en
  • Split: train

Training Objective

DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))

Hyperparameters

The following hyperparameters were used during training:

Expand
  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 1.0
  • distillation_objective: DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
  • train_embeddings: True
  • lr_scheduler: <torch.optim.lr_scheduler.LambdaLR object at 0x7ff7e81bb7c0>
  • student_model_name_or_path: None
  • student_config_name_or_path: None
  • student_model_config: None
  • reinitialize_weights: None
  • copy_teacher_modules: [('lm_head', False)]
  • student_model_as_bitnet: True
  • student_model_compile: False
  • dropout: None
  • teacher_model_name_or_path: gpt2
  • teacher_load_in_8bit: False
  • teacher_load_in_4bit: False
  • teacher_model_compile: False
  • dataset_uri: wikimedia/wikipedia
  • dataset_subset: 20231101.en
  • dataset_split: train
  • dataset_column_name: text
  • dataset_sample_size: 1000
  • dataset_test_size: 0.01
  • gradient_accumulation_steps: 1
  • weight_decay: 0.0
  • max_grad_norm: 1.0
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • gradient_checkpointing: True

Framework Versions

  • Distily 0.3.0
  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 2.21.0
Downloads last month
5
Safetensors
Model size
124M params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for distily/verify_v0.3.0

Finetuned
(1320)
this model

Dataset used to train distily/verify_v0.3.0