Summary
Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.
Model Architecture:
- Architecture:
GPT2LMHeadModel
- Total Parameters: 124,439,808
- Data Type (dtype): torch.bfloat16
- Model Size: 0.24 GB
Benchmark Metrics Comparison
Metric | dataset_sample_size=1000 | teacher |
---|---|---|
ai2_arc (acc) | 0.225 | 0.304 |
ai2_arc (acc_norm) | 0.251 | 0.309 |
ai2_arc (acc_norm_stderr) | 0.01 | |
ai2_arc (acc_stderr) | 0.01 | |
arc_challenge (acc) | 0.182 | 0.184 |
arc_challenge (acc_norm) | 0.223 | 0.214 |
arc_challenge (acc_norm_stderr) | 0.013 | |
arc_challenge (acc_stderr) | 0.012 | |
arc_easy (acc) | 0.268 | 0.424 |
arc_easy (acc_norm) | 0.278 | 0.405 |
arc_easy (acc_norm_stderr) | 0.016 | |
arc_easy (acc_stderr) | 0.016 | |
boolq (acc) | 0.375 | 0.541 |
boolq (acc_stderr) | 0.016 | |
cola (mcc) | 0.0 | 0.009 |
cola (mcc_stderr) | 0.032 | |
glue (acc) | 0.477 | 0.41 |
glue (acc_stderr) | 0.006 | |
glue (f1) | 0.0 | 0.526 |
glue (f1_stderr) | 0.014 | |
glue (mcc) | 0.0 | 0.009 |
glue (mcc_stderr) | 0.032 | |
hellaswag (acc) | 0.287 | 0.337 |
hellaswag (acc_norm) | 0.269 | 0.384 |
hellaswag (acc_norm_stderr) | 0.015 | |
hellaswag (acc_stderr) | 0.015 | |
mnli (acc) | 0.335 | 0.323 |
mnli (acc_stderr) | 0.015 | |
mnli_mismatch (acc) | 0.357 | 0.344 |
mnli_mismatch (acc_stderr) | 0.015 | |
mrpc (acc) | 0.316 | 0.515 |
mrpc (acc_stderr) | 0.025 | |
mrpc (f1) | 0.0 | 0.631 |
mrpc (f1_stderr) | 0.024 | |
qnli (acc) | 0.527 | 0.472 |
qnli (acc_stderr) | 0.016 | |
qqp (acc) | 0.673 | 0.34 |
qqp (acc_stderr) | 0.015 | |
qqp (f1) | 0.0 | 0.483 |
qqp (f1_stderr) | 0.017 | |
rte (acc) | 0.527 | 0.516 |
rte (acc_stderr) | 0.03 | |
sst2 (acc) | 0.557 | 0.511 |
sst2 (acc_stderr) | 0.017 | |
wikitext (bits_per_byte) | 1.979 | |
wikitext (byte_perplexity) | 3.942 | |
wikitext (word_perplexity) | 1533.0 | |
wnli (acc) | 0.437 | 0.451 |
wnli (acc_stderr) | 0.059 |
Resource Usage Comparison
- VRAM Use: 7.4923 GB
Distillation (Teacher -> Student) Architecture Difference:
- Architecture:
GPT2LMHeadModel
->GPT2LMHeadModel
- Total Parameters: 124,439,808 -> 124,439,808
- Data Type (dtype): torch.bfloat16 -> torch.bfloat16
- Model Size: 0.24 GB -> 0.24 GB
Module Diff Details
Train Dataset
Trained on 923,203 tokens from the wikimedia/wikipedia dataset.
- Num Samples:
990
- Subset:
20231101.en
- Split:
train
Training Objective
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
Hyperparameters
The following hyperparameters were used during training:
Expand
- learning_rate:
0.0001
- train_batch_size:
4
- eval_batch_size:
8
- seed:
42
- optimizer:
Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type:
constant
- lr_scheduler_warmup_ratio:
0.2
- num_epochs:
1.0
- distillation_objective:
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
- train_embeddings:
True
- lr_scheduler:
<torch.optim.lr_scheduler.LambdaLR object at 0x7ff7e81bb7c0>
- student_model_name_or_path:
None
- student_config_name_or_path:
None
- student_model_config:
None
- reinitialize_weights:
None
- copy_teacher_modules:
[('lm_head', False)]
- student_model_as_bitnet:
True
- student_model_compile:
False
- dropout:
None
- teacher_model_name_or_path:
gpt2
- teacher_load_in_8bit:
False
- teacher_load_in_4bit:
False
- teacher_model_compile:
False
- dataset_uri:
wikimedia/wikipedia
- dataset_subset:
20231101.en
- dataset_split:
train
- dataset_column_name:
text
- dataset_sample_size:
1000
- dataset_test_size:
0.01
- gradient_accumulation_steps:
1
- weight_decay:
0.0
- max_grad_norm:
1.0
- warmup_ratio:
0.2
- warmup_steps:
0
- gradient_checkpointing:
True
Framework Versions
- Distily 0.3.0
- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 2.21.0
- Downloads last month
- 5
Model tree for distily/verify_v0.3.0
Base model
openai-community/gpt2