dipawidia/xlnet-base-cased-product-review-sentiment-analysis
This model is a fine-tuned version of xlnet-base-cased on any type of product reviews dataset gathered from several e-commerce such as shopee, tokopedia, blibli, lazada, and zalora. The dataset can be found here It achieves the following results on the evaluation set:
- Train Loss: 0.1085
- Train Accuracy: 0.9617
- Validation Loss: 0.1910
- Validation Accuracy: 0.9414
- Epoch: 4
Intended uses & limitations
This fine-tuned XLNet model is used for sentiment analysis with 2 labels text classification: 0 -> Negative; 1 -> Positive.
Example Pipeline
from transformers import pipeline
pipe = pipeline("text-classification", model="dipawidia/xlnet-base-cased-product-review-sentiment-analysis")
pipe("This shoes is awesome")
[{'label': 'Positive', 'score': 0.9995703101158142}]
Full classification example
from transformers import XLNetTokenizer, TFXLNetForSequenceClassification
import tensorflow as tf
import numpy as np
tokenizer = XLNetTokenizer.from_pretrained("dipawidia/xlnet-base-cased-product-review-sentiment-analysis")
model = TFXLNetForSequenceClassification.from_pretrained("dipawidia/xlnet-base-cased-product-review-sentiment-analysis")
def get_sentimen(text):
tokenize_text = tokenizer(text, return_tensors = 'tf')
preds = model.predict(dict(tokenize_text))['logits']
class_preds = np.argmax(tf.keras.layers.Softmax()(preds))
if class_preds == 1:
label = 'Positive'
else:
label = 'Negative'
return(label)
get_sentimen('i hate this product')
Output:
Negative
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.3417 | 0.8491 | 0.1568 | 0.9449 | 0 |
0.1943 | 0.9235 | 0.1504 | 0.9466 | 1 |
0.1569 | 0.9404 | 0.1612 | 0.9466 | 2 |
0.1238 | 0.9572 | 0.1748 | 0.9475 | 3 |
0.1085 | 0.9617 | 0.1910 | 0.9414 | 4 |
Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Tokenizers 0.19.1
- Downloads last month
- 97
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for dipawidia/xlnet-base-cased-product-review-sentiment-analysis
Base model
xlnet/xlnet-base-cased