Edit model card

dipawidia/xlnet-base-cased-product-review-sentiment-analysis

This model is a fine-tuned version of xlnet-base-cased on any type of product reviews dataset gathered from several e-commerce such as shopee, tokopedia, blibli, lazada, and zalora. The dataset can be found here It achieves the following results on the evaluation set:

  • Train Loss: 0.1085
  • Train Accuracy: 0.9617
  • Validation Loss: 0.1910
  • Validation Accuracy: 0.9414
  • Epoch: 4

Intended uses & limitations

This fine-tuned XLNet model is used for sentiment analysis with 2 labels text classification: 0 -> Negative; 1 -> Positive.

Example Pipeline

from transformers import pipeline
pipe = pipeline("text-classification", model="dipawidia/xlnet-base-cased-product-review-sentiment-analysis")
pipe("This shoes is awesome")
[{'label': 'Positive', 'score': 0.9995703101158142}]

Full classification example

from transformers import XLNetTokenizer, TFXLNetForSequenceClassification
import tensorflow as tf
import numpy as np

tokenizer = XLNetTokenizer.from_pretrained("dipawidia/xlnet-base-cased-product-review-sentiment-analysis")
model = TFXLNetForSequenceClassification.from_pretrained("dipawidia/xlnet-base-cased-product-review-sentiment-analysis")

def get_sentimen(text):
  tokenize_text = tokenizer(text, return_tensors = 'tf')
  preds = model.predict(dict(tokenize_text))['logits']
  class_preds = np.argmax(tf.keras.layers.Softmax()(preds))
  if class_preds == 1:
    label = 'Positive'
  else:
    label = 'Negative'
  return(label)

get_sentimen('i hate this product')

Output:

Negative

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.3417 0.8491 0.1568 0.9449 0
0.1943 0.9235 0.1504 0.9466 1
0.1569 0.9404 0.1612 0.9466 2
0.1238 0.9572 0.1748 0.9475 3
0.1085 0.9617 0.1910 0.9414 4

Framework versions

  • Transformers 4.41.2
  • TensorFlow 2.15.0
  • Tokenizers 0.19.1
Downloads last month
97
Safetensors
Model size
117M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dipawidia/xlnet-base-cased-product-review-sentiment-analysis

Finetuned
(61)
this model

Dataset used to train dipawidia/xlnet-base-cased-product-review-sentiment-analysis