See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloom-560m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 558a671f38c8dcbb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/558a671f38c8dcbb_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: dimasik1987/77d32695-e0bb-4828-b138-751375aa018d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 79GiB
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/558a671f38c8dcbb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: af06dd2b-4782-48b1-a8c6-2dc70b75fa4a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: af06dd2b-4782-48b1-a8c6-2dc70b75fa4a
warmup_steps: 5
weight_decay: 0.001
xformers_attention: true
77d32695-e0bb-4828-b138-751375aa018d
This model is a fine-tuned version of bigscience/bloom-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.9678
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 3.3397 |
8.0796 | 0.0008 | 5 | 3.3005 |
10.2208 | 0.0017 | 10 | 3.2348 |
10.9866 | 0.0025 | 15 | 3.1485 |
11.1159 | 0.0033 | 20 | 3.0568 |
12.8344 | 0.0042 | 25 | 2.9896 |
12.2751 | 0.0050 | 30 | 2.9678 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for dimasik1987/77d32695-e0bb-4828-b138-751375aa018d
Base model
bigscience/bloom-560m