Update README.md
Browse files
README.md
CHANGED
@@ -7,95 +7,95 @@ Achieved 75% accuracy for a validation dataset for classifying 80 types of commo
|
|
7 |
|
8 |
See [my Kaggle notebook](https://www.kaggle.com/code/dima806/indian-food-image-detection-vit) for more details.
|
9 |
|
10 |
-
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6449300e3adf50d864095b90/
|
11 |
|
12 |
```
|
13 |
Classification report:
|
14 |
|
15 |
precision recall f1-score support
|
16 |
|
17 |
-
adhirasam 0.
|
18 |
-
aloo_gobi 0.
|
19 |
-
aloo_matar 0.
|
20 |
-
aloo_methi 0.
|
21 |
-
aloo_shimla_mirch 0.
|
22 |
-
aloo_tikki 1.0000 0.
|
23 |
-
anarsa 1.0000 0.
|
24 |
-
ariselu 0.
|
25 |
-
bandar_laddu 0.
|
26 |
-
basundi 0.
|
27 |
-
bhatura 0.
|
28 |
-
bhindi_masala 0.
|
29 |
-
biryani 0.
|
30 |
boondi 0.9474 0.9000 0.9231 20
|
31 |
butter_chicken 0.4419 0.9500 0.6032 20
|
32 |
-
chak_hao_kheer 0.
|
33 |
-
cham_cham 1.0000 0.
|
34 |
-
chana_masala 0.
|
35 |
-
chapati 0.
|
36 |
chhena_kheeri 0.0000 0.0000 0.0000 20
|
37 |
-
chicken_razala 0.
|
38 |
-
chicken_tikka 0.
|
39 |
-
chicken_tikka_masala 0.
|
40 |
-
chikki 0.
|
41 |
-
daal_baati_churma 0.
|
42 |
-
daal_puri 1.0000 0.
|
43 |
-
dal_makhani 0.
|
44 |
-
dal_tadka 0.
|
45 |
-
dharwad_pedha
|
46 |
doodhpak 0.6667 0.1000 0.1739 20
|
47 |
-
double_ka_meetha 0.
|
48 |
-
dum_aloo 0.
|
49 |
gajar_ka_halwa 0.8000 1.0000 0.8889 20
|
50 |
-
gavvalu 0.
|
51 |
-
ghevar 1.0000 0.
|
52 |
-
gulab_jamun 0.
|
53 |
-
imarti 0.
|
54 |
-
jalebi 0.
|
55 |
-
kachori 0.
|
56 |
kadai_paneer 0.6923 0.9000 0.7826 20
|
57 |
-
kadhi_pakoda 0.
|
58 |
-
kajjikaya 0.
|
59 |
-
kakinada_khaja 0.
|
60 |
-
kalakand 0.
|
61 |
-
karela_bharta 1.0000 0.
|
62 |
-
kofta 0.
|
63 |
-
kuzhi_paniyaram 0.
|
64 |
-
lassi 0.
|
65 |
-
ledikeni 0.
|
66 |
-
litti_chokha
|
67 |
-
lyangcha 0.
|
68 |
-
maach_jhol 0.
|
69 |
-
makki_di_roti_sarson_da_saag
|
70 |
-
malapua
|
71 |
-
misi_roti 0.
|
72 |
-
misti_doi 0.
|
73 |
-
modak 0.
|
74 |
-
mysore_pak 0.
|
75 |
-
naan 0.
|
76 |
-
navrattan_korma 0.
|
77 |
-
palak_paneer 0.
|
78 |
-
paneer_butter_masala 0.
|
79 |
-
phirni 0.
|
80 |
pithe 1.0000 0.2500 0.4000 20
|
81 |
-
poha 0.
|
82 |
-
poornalu 0.
|
83 |
-
pootharekulu 0.
|
84 |
-
qubani_ka_meetha 1.0000 0.
|
85 |
rabri 0.0000 0.0000 0.0000 20
|
86 |
-
ras_malai 0.
|
87 |
-
rasgulla 0.
|
88 |
-
sandesh 0.
|
89 |
-
shankarpali 0.
|
90 |
-
sheer_korma 0.
|
91 |
-
sheera 0.
|
92 |
-
shrikhand 0.
|
93 |
-
sohan_halwa 1.0000 0.
|
94 |
-
sohan_papdi 0.
|
95 |
-
sutar_feni 0.
|
96 |
-
unni_appam 0.
|
97 |
|
98 |
-
accuracy 0.
|
99 |
-
macro avg 0.
|
100 |
-
weighted avg 0.
|
101 |
```
|
|
|
7 |
|
8 |
See [my Kaggle notebook](https://www.kaggle.com/code/dima806/indian-food-image-detection-vit) for more details.
|
9 |
|
10 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6449300e3adf50d864095b90/s8tU9m3FfY34jZqNOSluO.png)
|
11 |
|
12 |
```
|
13 |
Classification report:
|
14 |
|
15 |
precision recall f1-score support
|
16 |
|
17 |
+
adhirasam 0.9412 0.8000 0.8649 20
|
18 |
+
aloo_gobi 0.7857 0.5500 0.6471 20
|
19 |
+
aloo_matar 0.8500 0.8500 0.8500 20
|
20 |
+
aloo_methi 0.7407 1.0000 0.8511 20
|
21 |
+
aloo_shimla_mirch 0.7619 0.8000 0.7805 20
|
22 |
+
aloo_tikki 1.0000 0.7500 0.8571 20
|
23 |
+
anarsa 1.0000 0.7000 0.8235 20
|
24 |
+
ariselu 0.7692 1.0000 0.8696 20
|
25 |
+
bandar_laddu 0.8333 0.7500 0.7895 20
|
26 |
+
basundi 0.2254 0.8000 0.3516 20
|
27 |
+
bhatura 0.7600 0.9500 0.8444 20
|
28 |
+
bhindi_masala 0.8636 0.9500 0.9048 20
|
29 |
+
biryani 0.8571 0.9000 0.8780 20
|
30 |
boondi 0.9474 0.9000 0.9231 20
|
31 |
butter_chicken 0.4419 0.9500 0.6032 20
|
32 |
+
chak_hao_kheer 0.9474 0.9000 0.9231 20
|
33 |
+
cham_cham 1.0000 0.4000 0.5714 20
|
34 |
+
chana_masala 0.7692 1.0000 0.8696 20
|
35 |
+
chapati 0.7407 1.0000 0.8511 20
|
36 |
chhena_kheeri 0.0000 0.0000 0.0000 20
|
37 |
+
chicken_razala 0.8000 1.0000 0.8889 20
|
38 |
+
chicken_tikka 0.9091 0.5000 0.6452 20
|
39 |
+
chicken_tikka_masala 0.7273 0.4000 0.5161 20
|
40 |
+
chikki 0.7308 0.9500 0.8261 20
|
41 |
+
daal_baati_churma 0.6957 0.8000 0.7442 20
|
42 |
+
daal_puri 1.0000 0.3000 0.4615 20
|
43 |
+
dal_makhani 0.8182 0.9000 0.8571 20
|
44 |
+
dal_tadka 0.6552 0.9500 0.7755 20
|
45 |
+
dharwad_pedha 1.0000 0.8000 0.8889 20
|
46 |
doodhpak 0.6667 0.1000 0.1739 20
|
47 |
+
double_ka_meetha 0.7917 0.9500 0.8636 20
|
48 |
+
dum_aloo 0.8462 0.5500 0.6667 20
|
49 |
gajar_ka_halwa 0.8000 1.0000 0.8889 20
|
50 |
+
gavvalu 0.8095 0.8500 0.8293 20
|
51 |
+
ghevar 1.0000 0.8000 0.8889 20
|
52 |
+
gulab_jamun 0.5429 0.9500 0.6909 20
|
53 |
+
imarti 0.8333 1.0000 0.9091 20
|
54 |
+
jalebi 0.9474 0.9000 0.9231 20
|
55 |
+
kachori 0.6364 0.7000 0.6667 20
|
56 |
kadai_paneer 0.6923 0.9000 0.7826 20
|
57 |
+
kadhi_pakoda 0.8500 0.8500 0.8500 20
|
58 |
+
kajjikaya 0.9412 0.8000 0.8649 20
|
59 |
+
kakinada_khaja 0.8824 0.7500 0.8108 20
|
60 |
+
kalakand 0.7692 0.5000 0.6061 20
|
61 |
+
karela_bharta 1.0000 0.2000 0.3333 20
|
62 |
+
kofta 0.9333 0.7000 0.8000 20
|
63 |
+
kuzhi_paniyaram 0.6667 0.9000 0.7660 20
|
64 |
+
lassi 0.8000 1.0000 0.8889 20
|
65 |
+
ledikeni 0.5714 0.2000 0.2963 20
|
66 |
+
litti_chokha 1.0000 0.8000 0.8889 20
|
67 |
+
lyangcha 0.8947 0.8500 0.8718 20
|
68 |
+
maach_jhol 0.9375 0.7500 0.8333 20
|
69 |
+
makki_di_roti_sarson_da_saag 1.0000 0.8500 0.9189 20
|
70 |
+
malapua 1.0000 0.7000 0.8235 20
|
71 |
+
misi_roti 0.8571 0.9000 0.8780 20
|
72 |
+
misti_doi 0.6364 0.7000 0.6667 20
|
73 |
+
modak 0.7826 0.9000 0.8372 20
|
74 |
+
mysore_pak 0.7917 0.9500 0.8636 20
|
75 |
+
naan 0.9091 1.0000 0.9524 20
|
76 |
+
navrattan_korma 0.9286 0.6500 0.7647 20
|
77 |
+
palak_paneer 0.7917 0.9500 0.8636 20
|
78 |
+
paneer_butter_masala 0.6667 0.7000 0.6829 20
|
79 |
+
phirni 0.5500 0.5500 0.5500 20
|
80 |
pithe 1.0000 0.2500 0.4000 20
|
81 |
+
poha 0.6786 0.9500 0.7917 20
|
82 |
+
poornalu 0.9000 0.9000 0.9000 20
|
83 |
+
pootharekulu 0.8636 0.9500 0.9048 20
|
84 |
+
qubani_ka_meetha 1.0000 0.6500 0.7879 20
|
85 |
rabri 0.0000 0.0000 0.0000 20
|
86 |
+
ras_malai 0.7083 0.8500 0.7727 20
|
87 |
+
rasgulla 0.5263 1.0000 0.6897 20
|
88 |
+
sandesh 0.6000 0.1500 0.2400 20
|
89 |
+
shankarpali 0.8333 1.0000 0.9091 20
|
90 |
+
sheer_korma 0.4643 0.6500 0.5417 20
|
91 |
+
sheera 0.8667 0.6500 0.7429 20
|
92 |
+
shrikhand 0.8000 0.6000 0.6857 20
|
93 |
+
sohan_halwa 1.0000 0.5000 0.6667 20
|
94 |
+
sohan_papdi 0.5556 1.0000 0.7143 20
|
95 |
+
sutar_feni 0.8571 0.9000 0.8780 20
|
96 |
+
unni_appam 0.5556 0.7500 0.6383 20
|
97 |
|
98 |
+
accuracy 0.7519 1600
|
99 |
+
macro avg 0.7813 0.7519 0.7352 1600
|
100 |
+
weighted avg 0.7813 0.7519 0.7352 1600
|
101 |
```
|