Edit model card

Achieved 75% accuracy for a validation dataset for classifying 80 types of common Indian food.

See my Kaggle notebook for more details.

image/png

Classification report:

                              precision    recall  f1-score   support

                   adhirasam     0.9412    0.8000    0.8649        20
                   aloo_gobi     0.7857    0.5500    0.6471        20
                  aloo_matar     0.8500    0.8500    0.8500        20
                  aloo_methi     0.7407    1.0000    0.8511        20
           aloo_shimla_mirch     0.7619    0.8000    0.7805        20
                  aloo_tikki     1.0000    0.7500    0.8571        20
                      anarsa     1.0000    0.7000    0.8235        20
                     ariselu     0.7692    1.0000    0.8696        20
                bandar_laddu     0.8333    0.7500    0.7895        20
                     basundi     0.2254    0.8000    0.3516        20
                     bhatura     0.7600    0.9500    0.8444        20
               bhindi_masala     0.8636    0.9500    0.9048        20
                     biryani     0.8571    0.9000    0.8780        20
                      boondi     0.9474    0.9000    0.9231        20
              butter_chicken     0.4419    0.9500    0.6032        20
              chak_hao_kheer     0.9474    0.9000    0.9231        20
                   cham_cham     1.0000    0.4000    0.5714        20
                chana_masala     0.7692    1.0000    0.8696        20
                     chapati     0.7407    1.0000    0.8511        20
               chhena_kheeri     0.0000    0.0000    0.0000        20
              chicken_razala     0.8000    1.0000    0.8889        20
               chicken_tikka     0.9091    0.5000    0.6452        20
        chicken_tikka_masala     0.7273    0.4000    0.5161        20
                      chikki     0.7308    0.9500    0.8261        20
           daal_baati_churma     0.6957    0.8000    0.7442        20
                   daal_puri     1.0000    0.3000    0.4615        20
                 dal_makhani     0.8182    0.9000    0.8571        20
                   dal_tadka     0.6552    0.9500    0.7755        20
               dharwad_pedha     1.0000    0.8000    0.8889        20
                    doodhpak     0.6667    0.1000    0.1739        20
            double_ka_meetha     0.7917    0.9500    0.8636        20
                    dum_aloo     0.8462    0.5500    0.6667        20
              gajar_ka_halwa     0.8000    1.0000    0.8889        20
                     gavvalu     0.8095    0.8500    0.8293        20
                      ghevar     1.0000    0.8000    0.8889        20
                 gulab_jamun     0.5429    0.9500    0.6909        20
                      imarti     0.8333    1.0000    0.9091        20
                      jalebi     0.9474    0.9000    0.9231        20
                     kachori     0.6364    0.7000    0.6667        20
                kadai_paneer     0.6923    0.9000    0.7826        20
                kadhi_pakoda     0.8500    0.8500    0.8500        20
                   kajjikaya     0.9412    0.8000    0.8649        20
              kakinada_khaja     0.8824    0.7500    0.8108        20
                    kalakand     0.7692    0.5000    0.6061        20
               karela_bharta     1.0000    0.2000    0.3333        20
                       kofta     0.9333    0.7000    0.8000        20
             kuzhi_paniyaram     0.6667    0.9000    0.7660        20
                       lassi     0.8000    1.0000    0.8889        20
                    ledikeni     0.5714    0.2000    0.2963        20
                litti_chokha     1.0000    0.8000    0.8889        20
                    lyangcha     0.8947    0.8500    0.8718        20
                  maach_jhol     0.9375    0.7500    0.8333        20
makki_di_roti_sarson_da_saag     1.0000    0.8500    0.9189        20
                     malapua     1.0000    0.7000    0.8235        20
                   misi_roti     0.8571    0.9000    0.8780        20
                   misti_doi     0.6364    0.7000    0.6667        20
                       modak     0.7826    0.9000    0.8372        20
                  mysore_pak     0.7917    0.9500    0.8636        20
                        naan     0.9091    1.0000    0.9524        20
             navrattan_korma     0.9286    0.6500    0.7647        20
                palak_paneer     0.7917    0.9500    0.8636        20
        paneer_butter_masala     0.6667    0.7000    0.6829        20
                      phirni     0.5500    0.5500    0.5500        20
                       pithe     1.0000    0.2500    0.4000        20
                        poha     0.6786    0.9500    0.7917        20
                    poornalu     0.9000    0.9000    0.9000        20
                pootharekulu     0.8636    0.9500    0.9048        20
            qubani_ka_meetha     1.0000    0.6500    0.7879        20
                       rabri     0.0000    0.0000    0.0000        20
                   ras_malai     0.7083    0.8500    0.7727        20
                    rasgulla     0.5263    1.0000    0.6897        20
                     sandesh     0.6000    0.1500    0.2400        20
                 shankarpali     0.8333    1.0000    0.9091        20
                 sheer_korma     0.4643    0.6500    0.5417        20
                      sheera     0.8667    0.6500    0.7429        20
                   shrikhand     0.8000    0.6000    0.6857        20
                 sohan_halwa     1.0000    0.5000    0.6667        20
                 sohan_papdi     0.5556    1.0000    0.7143        20
                  sutar_feni     0.8571    0.9000    0.8780        20
                  unni_appam     0.5556    0.7500    0.6383        20

                    accuracy                         0.7519      1600
                   macro avg     0.7813    0.7519    0.7352      1600
                weighted avg     0.7813    0.7519    0.7352      1600
Downloads last month
49
Safetensors
Model size
85.9M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dima806/indian_food_image_detection

Finetuned
(1693)
this model

Spaces using dima806/indian_food_image_detection 4