|
|
|
import mimetypes |
|
import os |
|
import time |
|
from argparse import ArgumentParser |
|
|
|
import cv2 |
|
import json_tricks as json |
|
import mmcv |
|
import mmengine |
|
import numpy as np |
|
|
|
from mmpose.apis import inference_topdown |
|
from mmpose.apis import init_model as init_pose_estimator |
|
from mmpose.evaluation.functional import nms |
|
from mmpose.registry import VISUALIZERS |
|
from mmpose.structures import merge_data_samples, split_instances |
|
from mmpose.utils import adapt_mmdet_pipeline |
|
|
|
try: |
|
from mmdet.apis import inference_detector, init_detector |
|
has_mmdet = True |
|
except (ImportError, ModuleNotFoundError): |
|
has_mmdet = False |
|
|
|
|
|
def process_one_image(args, |
|
img, |
|
detector, |
|
pose_estimator, |
|
visualizer=None, |
|
show_interval=0): |
|
"""Visualize predicted keypoints (and heatmaps) of one image.""" |
|
|
|
|
|
det_result = inference_detector(detector, img) |
|
pred_instance = det_result.pred_instances.cpu().numpy() |
|
bboxes = np.concatenate( |
|
(pred_instance.bboxes, pred_instance.scores[:, None]), axis=1) |
|
bboxes = bboxes[np.logical_and(pred_instance.labels == args.det_cat_id, |
|
pred_instance.scores > args.bbox_thr)] |
|
bboxes = bboxes[nms(bboxes, args.nms_thr), :4] |
|
|
|
|
|
pose_results = inference_topdown(pose_estimator, img, bboxes) |
|
data_samples = merge_data_samples(pose_results) |
|
|
|
|
|
if isinstance(img, str): |
|
img = mmcv.imread(img, channel_order='rgb') |
|
elif isinstance(img, np.ndarray): |
|
img = mmcv.bgr2rgb(img) |
|
|
|
if visualizer is not None: |
|
visualizer.add_datasample( |
|
'result', |
|
img, |
|
data_sample=data_samples, |
|
draw_gt=False, |
|
draw_heatmap=args.draw_heatmap, |
|
draw_bbox=args.draw_bbox, |
|
show_kpt_idx=args.show_kpt_idx, |
|
skeleton_style=args.skeleton_style, |
|
show=args.show, |
|
wait_time=show_interval, |
|
kpt_thr=args.kpt_thr) |
|
|
|
|
|
return data_samples.get('pred_instances', None) |
|
|
|
|
|
def main(): |
|
"""Visualize the demo images. |
|
|
|
Using mmdet to detect the human. |
|
""" |
|
parser = ArgumentParser() |
|
parser.add_argument('det_config', help='Config file for detection') |
|
parser.add_argument('det_checkpoint', help='Checkpoint file for detection') |
|
parser.add_argument('pose_config', help='Config file for pose') |
|
parser.add_argument('pose_checkpoint', help='Checkpoint file for pose') |
|
parser.add_argument( |
|
'--input', type=str, default='', help='Image/Video file') |
|
parser.add_argument( |
|
'--show', |
|
action='store_true', |
|
default=False, |
|
help='whether to show img') |
|
parser.add_argument( |
|
'--output-root', |
|
type=str, |
|
default='', |
|
help='root of the output img file. ' |
|
'Default not saving the visualization images.') |
|
parser.add_argument( |
|
'--save-predictions', |
|
action='store_true', |
|
default=False, |
|
help='whether to save predicted results') |
|
parser.add_argument( |
|
'--device', default='cuda:0', help='Device used for inference') |
|
parser.add_argument( |
|
'--det-cat-id', |
|
type=int, |
|
default=0, |
|
help='Category id for bounding box detection model') |
|
parser.add_argument( |
|
'--bbox-thr', |
|
type=float, |
|
default=0.3, |
|
help='Bounding box score threshold') |
|
parser.add_argument( |
|
'--nms-thr', |
|
type=float, |
|
default=0.3, |
|
help='IoU threshold for bounding box NMS') |
|
parser.add_argument( |
|
'--kpt-thr', |
|
type=float, |
|
default=0.3, |
|
help='Visualizing keypoint thresholds') |
|
parser.add_argument( |
|
'--draw-heatmap', |
|
action='store_true', |
|
default=False, |
|
help='Draw heatmap predicted by the model') |
|
parser.add_argument( |
|
'--show-kpt-idx', |
|
action='store_true', |
|
default=False, |
|
help='Whether to show the index of keypoints') |
|
parser.add_argument( |
|
'--skeleton-style', |
|
default='mmpose', |
|
type=str, |
|
choices=['mmpose', 'openpose'], |
|
help='Skeleton style selection') |
|
parser.add_argument( |
|
'--radius', |
|
type=int, |
|
default=3, |
|
help='Keypoint radius for visualization') |
|
parser.add_argument( |
|
'--thickness', |
|
type=int, |
|
default=1, |
|
help='Link thickness for visualization') |
|
parser.add_argument( |
|
'--show-interval', type=int, default=0, help='Sleep seconds per frame') |
|
parser.add_argument( |
|
'--alpha', type=float, default=0.8, help='The transparency of bboxes') |
|
parser.add_argument( |
|
'--draw-bbox', action='store_true', help='Draw bboxes of instances') |
|
|
|
assert has_mmdet, 'Please install mmdet to run the demo.' |
|
|
|
args = parser.parse_args() |
|
|
|
assert args.show or (args.output_root != '') |
|
assert args.input != '' |
|
assert args.det_config is not None |
|
assert args.det_checkpoint is not None |
|
|
|
output_file = None |
|
if args.output_root: |
|
mmengine.mkdir_or_exist(args.output_root) |
|
output_file = os.path.join(args.output_root, |
|
os.path.basename(args.input)) |
|
if args.input == 'webcam': |
|
output_file += '.mp4' |
|
|
|
if args.save_predictions: |
|
assert args.output_root != '' |
|
args.pred_save_path = f'{args.output_root}/results_' \ |
|
f'{os.path.splitext(os.path.basename(args.input))[0]}.json' |
|
|
|
|
|
detector = init_detector( |
|
args.det_config, args.det_checkpoint, device=args.device) |
|
detector.cfg = adapt_mmdet_pipeline(detector.cfg) |
|
|
|
|
|
pose_estimator = init_pose_estimator( |
|
args.pose_config, |
|
args.pose_checkpoint, |
|
device=args.device, |
|
cfg_options=dict( |
|
model=dict(test_cfg=dict(output_heatmaps=args.draw_heatmap)))) |
|
|
|
|
|
pose_estimator.cfg.visualizer.radius = args.radius |
|
pose_estimator.cfg.visualizer.alpha = args.alpha |
|
pose_estimator.cfg.visualizer.line_width = args.thickness |
|
visualizer = VISUALIZERS.build(pose_estimator.cfg.visualizer) |
|
|
|
|
|
visualizer.set_dataset_meta( |
|
pose_estimator.dataset_meta, skeleton_style=args.skeleton_style) |
|
|
|
if args.input == 'webcam': |
|
input_type = 'webcam' |
|
else: |
|
input_type = mimetypes.guess_type(args.input)[0].split('/')[0] |
|
|
|
if input_type == 'image': |
|
|
|
|
|
pred_instances = process_one_image(args, args.input, detector, |
|
pose_estimator, visualizer) |
|
|
|
if args.save_predictions: |
|
pred_instances_list = split_instances(pred_instances) |
|
|
|
if output_file: |
|
img_vis = visualizer.get_image() |
|
mmcv.imwrite(mmcv.rgb2bgr(img_vis), output_file) |
|
|
|
elif input_type in ['webcam', 'video']: |
|
|
|
if args.input == 'webcam': |
|
cap = cv2.VideoCapture(0) |
|
else: |
|
cap = cv2.VideoCapture(args.input) |
|
|
|
video_writer = None |
|
pred_instances_list = [] |
|
frame_idx = 0 |
|
|
|
while cap.isOpened(): |
|
success, frame = cap.read() |
|
frame_idx += 1 |
|
|
|
if not success: |
|
break |
|
|
|
|
|
pred_instances = process_one_image(args, frame, detector, |
|
pose_estimator, visualizer, |
|
0.001) |
|
|
|
if args.save_predictions: |
|
|
|
pred_instances_list.append( |
|
dict( |
|
frame_id=frame_idx, |
|
instances=split_instances(pred_instances))) |
|
|
|
|
|
if output_file: |
|
frame_vis = visualizer.get_image() |
|
|
|
if video_writer is None: |
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
|
|
|
|
video_writer = cv2.VideoWriter( |
|
output_file, |
|
fourcc, |
|
25, |
|
(frame_vis.shape[1], frame_vis.shape[0])) |
|
|
|
video_writer.write(mmcv.rgb2bgr(frame_vis)) |
|
|
|
|
|
if cv2.waitKey(5) & 0xFF == 27: |
|
break |
|
|
|
time.sleep(args.show_interval) |
|
|
|
if video_writer: |
|
video_writer.release() |
|
|
|
cap.release() |
|
|
|
else: |
|
args.save_predictions = False |
|
raise ValueError( |
|
f'file {os.path.basename(args.input)} has invalid format.') |
|
|
|
if args.save_predictions: |
|
with open(args.pred_save_path, 'w') as f: |
|
json.dump( |
|
dict( |
|
meta_info=pose_estimator.dataset_meta, |
|
instance_info=pred_instances_list), |
|
f, |
|
indent='\t') |
|
print(f'predictions have been saved at {args.pred_save_path}') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|