File size: 3,644 Bytes
f4a41d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
## Pre-trained Detection Models

### Human Bounding Box Detection Models

For human bounding box detection models, please download from [MMDetection Model Zoo](https://mmdetection.readthedocs.io/en/3.x/model_zoo.html).
MMDetection provides 80-class COCO-pretrained models, which already includes the `person` category.

### Hand Bounding Box Detection Models

For hand bounding box detection, we simply train our hand box models on OneHand10K dataset using MMDetection.

#### Hand detection results on OneHand10K test set

| Arch                                                              | Box AP |                               ckpt                                |                               log                                |
| :---------------------------------------------------------------- | :----: | :---------------------------------------------------------------: | :--------------------------------------------------------------: |
| [Cascade_R-CNN X-101-64x4d-FPN-1class](/demo/mmdetection_cfg/cascade_rcnn_x101_64x4d_fpn_1class.py) | 0.817  | [ckpt](https://download.openmmlab.com/mmpose/mmdet_pretrained/cascade_rcnn_x101_64x4d_fpn_20e_onehand10k-dac19597_20201030.pth) | [log](https://download.openmmlab.com/mmpose/mmdet_pretrained/cascade_rcnn_x101_64x4d_fpn_20e_onehand10k_20201030.log.json) |

### Face Bounding Box Detection Models

For face bounding box detection, we train a YOLOX detector on COCO-face data using MMDetection.

#### Face detection results on COCO-face test set

| Arch                                                            | Box AP |                                                  ckpt                                                  |
| :-------------------------------------------------------------- | :----: | :----------------------------------------------------------------------------------------------------: |
| [YOLOX-s](/demo/mmdetection_cfg/yolox-s_8xb8-300e_coco-face.py) | 0.408  | [ckpt](https://download.openmmlab.com/mmpose/mmdet_pretrained/yolo-x_8xb8-300e_coco-face_13274d7c.pth) |

### Animal Bounding Box Detection Models

#### COCO animals

In COCO dataset, there are 80 object categories, including 10 common `animal` categories (14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe')
For animals in the categories, please download from [MMDetection Model Zoo](https://mmdetection.readthedocs.io/en/3.x/model_zoo.html).

#### Macaque detection results on MacaquePose test set

| Arch                                                              | Box AP |                               ckpt                                |                               log                                |
| :---------------------------------------------------------------- | :----: | :---------------------------------------------------------------: | :--------------------------------------------------------------: |
| [Faster_R-CNN_Res50-FPN-1class](/demo/mmdetection_cfg/faster_rcnn_r50_fpn_1class.py) | 0.840  | [ckpt](https://download.openmmlab.com/mmpose/mmdet_pretrained/faster_rcnn_r50_fpn_1x_macaque-f64f2812_20210409.pth) | [log](https://download.openmmlab.com/mmpose/mmdet_pretrained/faster_rcnn_r50_fpn_1x_macaque_20210409.log.json) |
| [Cascade_R-CNN X-101-64x4d-FPN-1class](/demo/mmdetection_cfg/cascade_rcnn_x101_64x4d_fpn_1class.py) | 0.879  | [ckpt](https://download.openmmlab.com/mmpose/mmdet_pretrained/cascade_rcnn_x101_64x4d_fpn_20e_macaque-e45e36f5_20210409.pth) | [log](https://download.openmmlab.com/mmpose/mmdet_pretrained/cascade_rcnn_x101_64x4d_fpn_20e_macaque_20210409.log.json) |