File size: 18,404 Bytes
f4a41d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
# Copyright (c) OpenMMLab. All rights reserved.
import mimetypes
import os
import time
from argparse import ArgumentParser
from functools import partial
import cv2
import json_tricks as json
import mmcv
import mmengine
import numpy as np
from mmengine.structures import InstanceData
from mmpose.apis import (_track_by_iou, _track_by_oks, collect_multi_frames,
convert_keypoint_definition, extract_pose_sequence,
inference_pose_lifter_model, inference_topdown,
init_model)
from mmpose.models.pose_estimators import PoseLifter
from mmpose.models.pose_estimators.topdown import TopdownPoseEstimator
from mmpose.registry import VISUALIZERS
from mmpose.structures import (PoseDataSample, merge_data_samples,
split_instances)
from mmpose.utils import adapt_mmdet_pipeline
try:
from mmdet.apis import inference_detector, init_detector
has_mmdet = True
except (ImportError, ModuleNotFoundError):
has_mmdet = False
def parse_args():
parser = ArgumentParser()
parser.add_argument('det_config', help='Config file for detection')
parser.add_argument('det_checkpoint', help='Checkpoint file for detection')
parser.add_argument(
'pose_estimator_config',
type=str,
default=None,
help='Config file for the 1st stage 2D pose estimator')
parser.add_argument(
'pose_estimator_checkpoint',
type=str,
default=None,
help='Checkpoint file for the 1st stage 2D pose estimator')
parser.add_argument(
'pose_lifter_config',
help='Config file for the 2nd stage pose lifter model')
parser.add_argument(
'pose_lifter_checkpoint',
help='Checkpoint file for the 2nd stage pose lifter model')
parser.add_argument('--input', type=str, default='', help='Video path')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='Whether to show visualizations')
parser.add_argument(
'--rebase-keypoint-height',
action='store_true',
help='Rebase the predicted 3D pose so its lowest keypoint has a '
'height of 0 (landing on the ground). This is useful for '
'visualization when the model do not predict the global position '
'of the 3D pose.')
parser.add_argument(
'--norm-pose-2d',
action='store_true',
help='Scale the bbox (along with the 2D pose) to the average bbox '
'scale of the dataset, and move the bbox (along with the 2D pose) to '
'the average bbox center of the dataset. This is useful when bbox '
'is small, especially in multi-person scenarios.')
parser.add_argument(
'--num-instances',
type=int,
default=-1,
help='The number of 3D poses to be visualized in every frame. If '
'less than 0, it will be set to the number of pose results in the '
'first frame.')
parser.add_argument(
'--output-root',
type=str,
default='',
help='Root of the output video file. '
'Default not saving the visualization video.')
parser.add_argument(
'--save-predictions',
action='store_true',
default=False,
help='whether to save predicted results')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--det-cat-id',
type=int,
default=0,
help='Category id for bounding box detection model')
parser.add_argument(
'--bbox-thr',
type=float,
default=0.9,
help='Bounding box score threshold')
parser.add_argument('--kpt-thr', type=float, default=0.3)
parser.add_argument(
'--use-oks-tracking', action='store_true', help='Using OKS tracking')
parser.add_argument(
'--tracking-thr', type=float, default=0.3, help='Tracking threshold')
parser.add_argument(
'--show-interval', type=int, default=0, help='Sleep seconds per frame')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')
parser.add_argument(
'--radius',
type=int,
default=3,
help='Keypoint radius for visualization')
parser.add_argument(
'--use-multi-frames',
action='store_true',
default=False,
help='whether to use multi frames for inference in the 2D pose'
'detection stage. Default: False.')
args = parser.parse_args()
return args
def get_area(results):
for i, data_sample in enumerate(results):
pred_instance = data_sample.pred_instances.cpu().numpy()
if 'bboxes' in pred_instance:
bboxes = pred_instance.bboxes
results[i].pred_instances.set_field(
np.array([(bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
for bbox in bboxes]), 'areas')
else:
keypoints = pred_instance.keypoints
areas, bboxes = [], []
for keypoint in keypoints:
xmin = np.min(keypoint[:, 0][keypoint[:, 0] > 0], initial=1e10)
xmax = np.max(keypoint[:, 0])
ymin = np.min(keypoint[:, 1][keypoint[:, 1] > 0], initial=1e10)
ymax = np.max(keypoint[:, 1])
areas.append((xmax - xmin) * (ymax - ymin))
bboxes.append([xmin, ymin, xmax, ymax])
results[i].pred_instances.areas = np.array(areas)
results[i].pred_instances.bboxes = np.array(bboxes)
return results
def get_pose_est_results(args, pose_estimator, frame, bboxes,
pose_est_results_last, next_id, pose_lift_dataset):
pose_det_dataset = pose_estimator.cfg.test_dataloader.dataset
# make person results for current image
pose_est_results = inference_topdown(pose_estimator, frame, bboxes)
pose_est_results = get_area(pose_est_results)
if args.use_oks_tracking:
_track = partial(_track_by_oks)
else:
_track = _track_by_iou
for i, result in enumerate(pose_est_results):
track_id, pose_est_results_last, match_result = _track(
result, pose_est_results_last, args.tracking_thr)
if track_id == -1:
pred_instances = result.pred_instances.cpu().numpy()
keypoints = pred_instances.keypoints
if np.count_nonzero(keypoints[:, :, 1]) >= 3:
pose_est_results[i].set_field(next_id, 'track_id')
next_id += 1
else:
# If the number of keypoints detected is small,
# delete that person instance.
keypoints[:, :, 1] = -10
pose_est_results[i].pred_instances.set_field(
keypoints, 'keypoints')
bboxes = pred_instances.bboxes * 0
pose_est_results[i].pred_instances.set_field(bboxes, 'bboxes')
pose_est_results[i].set_field(-1, 'track_id')
pose_est_results[i].set_field(pred_instances, 'pred_instances')
else:
pose_est_results[i].set_field(track_id, 'track_id')
del match_result
pose_est_results_converted = []
for pose_est_result in pose_est_results:
pose_est_result_converted = PoseDataSample()
gt_instances = InstanceData()
pred_instances = InstanceData()
for k in pose_est_result.gt_instances.keys():
gt_instances.set_field(pose_est_result.gt_instances[k], k)
for k in pose_est_result.pred_instances.keys():
pred_instances.set_field(pose_est_result.pred_instances[k], k)
pose_est_result_converted.gt_instances = gt_instances
pose_est_result_converted.pred_instances = pred_instances
pose_est_result_converted.track_id = pose_est_result.track_id
keypoints = convert_keypoint_definition(pred_instances.keypoints,
pose_det_dataset['type'],
pose_lift_dataset['type'])
pose_est_result_converted.pred_instances.keypoints = keypoints
pose_est_results_converted.append(pose_est_result_converted)
return pose_est_results, pose_est_results_converted, next_id
def get_pose_lift_results(args, visualizer, pose_lifter, pose_est_results_list,
frame, frame_idx, pose_est_results):
pose_lift_dataset = pose_lifter.cfg.test_dataloader.dataset
# extract and pad input pose2d sequence
pose_seq_2d = extract_pose_sequence(
pose_est_results_list,
frame_idx=frame_idx,
causal=pose_lift_dataset.get('causal', False),
seq_len=pose_lift_dataset.get('seq_len', 1),
step=pose_lift_dataset.get('seq_step', 1))
# 2D-to-3D pose lifting
width, height = frame.shape[:2]
pose_lift_results = inference_pose_lifter_model(
pose_lifter,
pose_seq_2d,
image_size=(width, height),
norm_pose_2d=args.norm_pose_2d)
# Pose processing
for idx, pose_lift_res in enumerate(pose_lift_results):
pose_lift_res.track_id = pose_est_results[idx].get('track_id', 1e4)
pred_instances = pose_lift_res.pred_instances
keypoints = pred_instances.keypoints
keypoint_scores = pred_instances.keypoint_scores
if keypoint_scores.ndim == 3:
keypoint_scores = np.squeeze(keypoint_scores, axis=1)
pose_lift_results[
idx].pred_instances.keypoint_scores = keypoint_scores
if keypoints.ndim == 4:
keypoints = np.squeeze(keypoints, axis=1)
keypoints = keypoints[..., [0, 2, 1]]
keypoints[..., 0] = -keypoints[..., 0]
keypoints[..., 2] = -keypoints[..., 2]
# rebase height (z-axis)
if args.rebase_keypoint_height:
keypoints[..., 2] -= np.min(
keypoints[..., 2], axis=-1, keepdims=True)
pose_lift_results[idx].pred_instances.keypoints = keypoints
pose_lift_results = sorted(
pose_lift_results, key=lambda x: x.get('track_id', 1e4))
pred_3d_data_samples = merge_data_samples(pose_lift_results)
det_data_sample = merge_data_samples(pose_est_results)
if args.num_instances < 0:
args.num_instances = len(pose_lift_results)
# Visualization
if visualizer is not None:
visualizer.add_datasample(
'result',
frame,
data_sample=pred_3d_data_samples,
det_data_sample=det_data_sample,
draw_gt=False,
show=args.show,
draw_bbox=True,
kpt_thr=args.kpt_thr,
num_instances=args.num_instances,
wait_time=args.show_interval)
return pred_3d_data_samples.get('pred_instances', None)
def get_bbox(args, detector, frame):
det_result = inference_detector(detector, frame)
pred_instance = det_result.pred_instances.cpu().numpy()
bboxes = pred_instance.bboxes
bboxes = bboxes[np.logical_and(pred_instance.labels == args.det_cat_id,
pred_instance.scores > args.bbox_thr)]
return bboxes
def main():
assert has_mmdet, 'Please install mmdet to run the demo.'
args = parse_args()
assert args.show or (args.output_root != '')
assert args.input != ''
assert args.det_config is not None
assert args.det_checkpoint is not None
detector = init_detector(
args.det_config, args.det_checkpoint, device=args.device.lower())
detector.cfg = adapt_mmdet_pipeline(detector.cfg)
pose_estimator = init_model(
args.pose_estimator_config,
args.pose_estimator_checkpoint,
device=args.device.lower())
assert isinstance(pose_estimator, TopdownPoseEstimator), 'Only "TopDown"' \
'model is supported for the 1st stage (2D pose detection)'
det_kpt_color = pose_estimator.dataset_meta.get('keypoint_colors', None)
det_dataset_skeleton = pose_estimator.dataset_meta.get(
'skeleton_links', None)
det_dataset_link_color = pose_estimator.dataset_meta.get(
'skeleton_link_colors', None)
# frame index offsets for inference, used in multi-frame inference setting
if args.use_multi_frames:
assert 'frame_indices' in pose_estimator.cfg.test_dataloader.dataset
indices = pose_estimator.cfg.test_dataloader.dataset[
'frame_indices_test']
pose_lifter = init_model(
args.pose_lifter_config,
args.pose_lifter_checkpoint,
device=args.device.lower())
assert isinstance(pose_lifter, PoseLifter), \
'Only "PoseLifter" model is supported for the 2nd stage ' \
'(2D-to-3D lifting)'
pose_lift_dataset = pose_lifter.cfg.test_dataloader.dataset
pose_lifter.cfg.visualizer.radius = args.radius
pose_lifter.cfg.visualizer.line_width = args.thickness
pose_lifter.cfg.visualizer.det_kpt_color = det_kpt_color
pose_lifter.cfg.visualizer.det_dataset_skeleton = det_dataset_skeleton
pose_lifter.cfg.visualizer.det_dataset_link_color = det_dataset_link_color
visualizer = VISUALIZERS.build(pose_lifter.cfg.visualizer)
# the dataset_meta is loaded from the checkpoint
visualizer.set_dataset_meta(pose_lifter.dataset_meta)
if args.input == 'webcam':
input_type = 'webcam'
else:
input_type = mimetypes.guess_type(args.input)[0].split('/')[0]
if args.output_root == '':
save_output = False
else:
mmengine.mkdir_or_exist(args.output_root)
output_file = os.path.join(args.output_root,
os.path.basename(args.input))
if args.input == 'webcam':
output_file += '.mp4'
save_output = True
if args.save_predictions:
assert args.output_root != ''
args.pred_save_path = f'{args.output_root}/results_' \
f'{os.path.splitext(os.path.basename(args.input))[0]}.json'
if save_output:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
pose_est_results_list = []
pred_instances_list = []
if input_type == 'image':
frame = mmcv.imread(args.input, channel_order='rgb')
# First stage: 2D pose detection
bboxes = get_bbox(args, detector, frame)
pose_est_results, pose_est_results_converted, _ = get_pose_est_results(
args, pose_estimator, frame, bboxes, [], 0, pose_lift_dataset)
pose_est_results_list.append(pose_est_results_converted.copy())
pred_3d_pred = get_pose_lift_results(args, visualizer, pose_lifter,
pose_est_results_list, frame, 0,
pose_est_results)
if args.save_predictions:
# save prediction results
pred_instances_list = split_instances(pred_3d_pred)
if save_output:
frame_vis = visualizer.get_image()
mmcv.imwrite(mmcv.rgb2bgr(frame_vis), output_file)
elif input_type in ['webcam', 'video']:
next_id = 0
pose_est_results_converted = []
if args.input == 'webcam':
video = cv2.VideoCapture(0)
else:
video = cv2.VideoCapture(args.input)
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
if int(major_ver) < 3:
fps = video.get(cv2.cv.CV_CAP_PROP_FPS)
else:
fps = video.get(cv2.CAP_PROP_FPS)
video_writer = None
frame_idx = 0
while video.isOpened():
success, frame = video.read()
frame_idx += 1
if not success:
break
pose_est_results_last = pose_est_results_converted
# First stage: 2D pose detection
if args.use_multi_frames:
frames = collect_multi_frames(video, frame_idx, indices,
args.online)
# make person results for current image
bboxes = get_bbox(args, detector, frame)
pose_est_results, pose_est_results_converted, next_id = get_pose_est_results( # noqa: E501
args, pose_estimator,
frames if args.use_multi_frames else frame, bboxes,
pose_est_results_last, next_id, pose_lift_dataset)
pose_est_results_list.append(pose_est_results_converted.copy())
# Second stage: Pose lifting
pred_3d_pred = get_pose_lift_results(args, visualizer, pose_lifter,
pose_est_results_list,
mmcv.bgr2rgb(frame),
frame_idx, pose_est_results)
if args.save_predictions:
# save prediction results
pred_instances_list.append(
dict(
frame_id=frame_idx,
instances=split_instances(pred_3d_pred)))
if save_output:
frame_vis = visualizer.get_image()
if video_writer is None:
# the size of the image with visualization may vary
# depending on the presence of heatmaps
video_writer = cv2.VideoWriter(output_file, fourcc, fps,
(frame_vis.shape[1],
frame_vis.shape[0]))
video_writer.write(mmcv.rgb2bgr(frame_vis))
# press ESC to exit
if cv2.waitKey(5) & 0xFF == 27:
break
time.sleep(args.show_interval)
video.release()
if video_writer:
video_writer.release()
else:
args.save_predictions = False
raise ValueError(
f'file {os.path.basename(args.input)} has invalid format.')
if args.save_predictions:
with open(args.pred_save_path, 'w') as f:
json.dump(
dict(
meta_info=pose_lifter.dataset_meta,
instance_info=pred_instances_list),
f,
indent='\t')
print(f'predictions have been saved at {args.pred_save_path}')
if __name__ == '__main__':
main()
|