File size: 24,841 Bytes
f4a41d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import os
import numpy as np
from rembg import remove, new_session
from PIL import Image, ImageOps, ImageFilter, ImageEnhance
import cv2
from tqdm import tqdm
import gradio as gr
from modules import script_callbacks, shared
import torch
import tempfile

class GeekyRemB:
    def __init__(self):
        self.session = None

    def apply_chroma_key(self, image, color, threshold, color_tolerance=20):
        hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
        if color == "green":
            lower = np.array([40 - color_tolerance, 40, 40])
            upper = np.array([80 + color_tolerance, 255, 255])
        elif color == "blue":
            lower = np.array([90 - color_tolerance, 40, 40])
            upper = np.array([130 + color_tolerance, 255, 255])
        elif color == "red":
            lower = np.array([0, 40, 40])
            upper = np.array([20 + color_tolerance, 255, 255])
        else:
            return np.zeros(image.shape[:2], dtype=np.uint8)

        mask = cv2.inRange(hsv, lower, upper)
        mask = 255 - cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)[1]
        return mask

    def process_mask(self, mask, invert_mask, feather_amount, mask_blur, mask_expansion):
        if invert_mask:
            mask = 255 - mask

        if mask_expansion != 0:
            kernel = np.ones((abs(mask_expansion), abs(mask_expansion)), np.uint8)
            if mask_expansion > 0:
                mask = cv2.dilate(mask, kernel, iterations=1)
            else:
                mask = cv2.erode(mask, kernel, iterations=1)

        if feather_amount > 0:
            mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=feather_amount)

        if mask_blur > 0:
            mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=mask_blur)

        return mask

    def remove_background(self, image, background_image, model, alpha_matting, alpha_matting_foreground_threshold, 

                          alpha_matting_background_threshold, post_process_mask, chroma_key, chroma_threshold,

                          color_tolerance, background_mode, background_color, output_format="RGBA", 

                          invert_mask=False, feather_amount=0, edge_detection=False, 

                          edge_thickness=1, edge_color="#FFFFFF", shadow=False, shadow_blur=5, 

                          shadow_opacity=0.5, color_adjustment=False, brightness=1.0, contrast=1.0, 

                          saturation=1.0, x_position=0, y_position=0, rotation=0, opacity=1.0, 

                          flip_horizontal=False, flip_vertical=False, mask_blur=0, mask_expansion=0,

                          foreground_scale=1.0, foreground_aspect_ratio=None, remove_bg=True,

                          use_custom_dimensions=False, custom_width=None, custom_height=None,

                          output_dimension_source="Foreground"):
        if self.session is None or self.session.model_name != model:
            self.session = new_session(model)

        bg_color = tuple(int(background_color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4)) + (255,)
        edge_color = tuple(int(edge_color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))

        pil_image = image if isinstance(image, Image.Image) else Image.fromarray(np.clip(255. * image[0].cpu().numpy(), 0, 255).astype(np.uint8))
        original_image = np.array(pil_image)

        if chroma_key != "none":
            chroma_mask = self.apply_chroma_key(original_image, chroma_key, chroma_threshold, color_tolerance)
            input_mask = chroma_mask
        else:
            input_mask = None

        if remove_bg:
            removed_bg = remove(
                pil_image,
                session=self.session,
                alpha_matting=alpha_matting,
                alpha_matting_foreground_threshold=alpha_matting_foreground_threshold,
                alpha_matting_background_threshold=alpha_matting_background_threshold,
                post_process_mask=post_process_mask,
            )
            rembg_mask = np.array(removed_bg)[:,:,3]
        else:
            removed_bg = pil_image.convert("RGBA")
            rembg_mask = np.full(pil_image.size[::-1], 255, dtype=np.uint8)

        if input_mask is not None:
            final_mask = cv2.bitwise_and(rembg_mask, input_mask)
        else:
            final_mask = rembg_mask

        final_mask = self.process_mask(final_mask, invert_mask, feather_amount, mask_blur, mask_expansion)

        orig_width, orig_height = pil_image.size
        bg_width, bg_height = background_image.size if background_image else (orig_width, orig_height)

        if use_custom_dimensions and custom_width and custom_height:
            output_width, output_height = int(custom_width), int(custom_height)
        elif output_dimension_source == "Background" and background_image:
            output_width, output_height = bg_width, bg_height
        else:
            output_width, output_height = orig_width, orig_height

        new_width = int(orig_width * foreground_scale)
        if foreground_aspect_ratio is not None:
            new_height = int(new_width / foreground_aspect_ratio)
        else:
            new_height = int(orig_height * foreground_scale)

        fg_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
        fg_mask = Image.fromarray(final_mask).resize((new_width, new_height), Image.LANCZOS)

        if background_mode == "transparent":
            result = Image.new("RGBA", (output_width, output_height), (0, 0, 0, 0))
        elif background_mode == "color":
            result = Image.new("RGBA", (output_width, output_height), bg_color)
        else:  # background_mode == "image"
            if background_image is not None:
                result = background_image.resize((output_width, output_height), Image.LANCZOS).convert("RGBA")
            else:
                result = Image.new("RGBA", (output_width, output_height), (0, 0, 0, 0))

        if flip_horizontal:
            fg_image = fg_image.transpose(Image.FLIP_LEFT_RIGHT)
            fg_mask = fg_mask.transpose(Image.FLIP_LEFT_RIGHT)
        if flip_vertical:
            fg_image = fg_image.transpose(Image.FLIP_TOP_BOTTOM)
            fg_mask = fg_mask.transpose(Image.FLIP_TOP_BOTTOM)

        fg_image = fg_image.rotate(rotation, resample=Image.BICUBIC, expand=True)
        fg_mask = fg_mask.rotate(rotation, resample=Image.BICUBIC, expand=True)

        paste_x = x_position + (output_width - fg_image.width) // 2
        paste_y = y_position + (output_height - fg_image.height) // 2

        fg_rgba = fg_image.convert("RGBA")
        fg_with_opacity = Image.new("RGBA", fg_rgba.size, (0, 0, 0, 0))
        for x in range(fg_rgba.width):
            for y in range(fg_rgba.height):
                r, g, b, a = fg_rgba.getpixel((x, y))
                fg_with_opacity.putpixel((x, y), (r, g, b, int(a * opacity)))

        fg_mask_with_opacity = fg_mask.point(lambda p: int(p * opacity))

        result.paste(fg_with_opacity, (paste_x, paste_y), fg_mask_with_opacity)

        if edge_detection:
            edge_mask = cv2.Canny(np.array(fg_mask), 100, 200)
            edge_mask = cv2.dilate(edge_mask, np.ones((edge_thickness, edge_thickness), np.uint8), iterations=1)
            edge_overlay = Image.new("RGBA", (output_width, output_height), (0, 0, 0, 0))
            edge_overlay.paste(Image.new("RGB", fg_image.size, edge_color), (paste_x, paste_y), Image.fromarray(edge_mask))
            result = Image.alpha_composite(result, edge_overlay)

        if shadow:
            shadow_mask = fg_mask.filter(ImageFilter.GaussianBlur(shadow_blur))
            shadow_image = Image.new("RGBA", (output_width, output_height), (0, 0, 0, 0))
            shadow_image.paste((0, 0, 0, int(255 * shadow_opacity)), (paste_x, paste_y), shadow_mask)
            result = Image.alpha_composite(result, shadow_image.filter(ImageFilter.GaussianBlur(shadow_blur)))

        if color_adjustment:
            enhancer = ImageEnhance.Brightness(result)
            result = enhancer.enhance(brightness)
            enhancer = ImageEnhance.Contrast(result)
            result = enhancer.enhance(contrast)
            enhancer = ImageEnhance.Color(result)
            result = enhancer.enhance(saturation)

        if output_format == "RGB":
            result = result.convert("RGB")

        return result, fg_mask

    def process_frame(self, frame, *args):
        pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        processed_frame, _ = self.remove_background(pil_frame, *args)
        return cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)

    def process_video(self, input_path, output_path, background_video_path, *args):
        cap = cv2.VideoCapture(input_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))

        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        
        if background_video_path:
            bg_cap = cv2.VideoCapture(background_video_path)
            bg_total_frames = int(bg_cap.get(cv2.CAP_PROP_FRAME_COUNT))
        
        for frame_num in tqdm(range(total_frames), desc="Processing video"):
            ret, frame = cap.read()
            if not ret:
                break
            
            if background_video_path:
                bg_frame_num = frame_num % bg_total_frames
                bg_cap.set(cv2.CAP_PROP_POS_FRAMES, bg_frame_num)
                bg_ret, bg_frame = bg_cap.read()
                if bg_ret:
                    bg_frame_resized = cv2.resize(bg_frame, (width, height))
                    args = list(args)
                    args[1] = Image.fromarray(cv2.cvtColor(bg_frame_resized, cv2.COLOR_BGR2RGB))
                    args = tuple(args)
            
            processed_frame = self.process_frame(frame, *args)
            out.write(processed_frame)

        cap.release()
        if background_video_path:
            bg_cap.release()
        out.release()

        # Convert output video to MP4 container
        temp_output = output_path + "_temp.mp4"
        os.rename(output_path, temp_output)
        os.system(f"ffmpeg -i {temp_output} -c copy {output_path}")
        os.remove(temp_output)

def on_ui_tabs():
    with gr.Blocks(analytics_enabled=False) as geeky_remb_tab:
        gr.Markdown("# GeekyRemB: Background Removal and Image/Video Manipulation")
        
        with gr.Row():
            with gr.Column(scale=1):
                input_type = gr.Radio(["Image", "Video"], label="Input Type", value="Image")
                foreground_input = gr.Image(label="Foreground Image", type="pil", visible=True)
                foreground_video = gr.Video(label="Foreground Video", visible=False)
                
                with gr.Group():
                    gr.Markdown("### Foreground Adjustments")
                    foreground_scale = gr.Slider(label="Scale", minimum=0.1, maximum=5.0, value=1.0, step=0.1)
                    foreground_aspect_ratio = gr.Slider(label="Aspect Ratio", minimum=0.1, maximum=10.0, value=1.0, step=0.1)
                    x_position = gr.Slider(label="X Position", minimum=-1000, maximum=1000, value=0, step=1)
                    y_position = gr.Slider(label="Y Position", minimum=-1000, maximum=1000, value=0, step=1)
                    rotation = gr.Slider(label="Rotation", minimum=-360, maximum=360, value=0, step=0.1)
                    opacity = gr.Slider(label="Opacity", minimum=0.0, maximum=1.0, value=1.0, step=0.01)
                    flip_horizontal = gr.Checkbox(label="Flip Horizontal", value=False)
                    flip_vertical = gr.Checkbox(label="Flip Vertical", value=False)

            with gr.Column(scale=1):
                result_type = gr.Radio(["Image", "Video"], label="Output Type", value="Image")
                result_image = gr.Image(label="Result Image", type="pil", visible=True)
                result_video = gr.Video(label="Result Video", visible=False)
                
                with gr.Group():
                    gr.Markdown("### Background Options")
                    remove_background = gr.Checkbox(label="Remove Background", value=True)
                    background_mode = gr.Radio(label="Background Mode", choices=["transparent", "color", "image", "video"], value="transparent")
                    background_color = gr.ColorPicker(label="Background Color", value="#000000", visible=False)
                    background_image = gr.Image(label="Background Image", type="pil", visible=False)
                    background_video = gr.Video(label="Background Video", visible=False)

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Removal Settings")
                    model = gr.Dropdown(label="Model", choices=["u2net", "u2netp", "u2net_human_seg", "u2net_cloth_seg", "silueta", "isnet-general-use", "isnet-anime"], value="u2net")
                    output_format = gr.Radio(label="Output Format", choices=["RGBA", "RGB"], value="RGBA")
                    alpha_matting = gr.Checkbox(label="Alpha Matting", value=False)
                    alpha_matting_foreground_threshold = gr.Slider(label="Alpha Matting Foreground Threshold", minimum=0, maximum=255, value=240, step=1)
                    alpha_matting_background_threshold = gr.Slider(label="Alpha Matting Background Threshold", minimum=0, maximum=255, value=10, step=1)
                    post_process_mask = gr.Checkbox(label="Post Process Mask", value=False)
                
                with gr.Column():
                    gr.Markdown("### Chroma Key Settings")
                    chroma_key = gr.Dropdown(label="Chroma Key", choices=["none", "green", "blue", "red"], value="none")
                    chroma_threshold = gr.Slider(label="Chroma Threshold", minimum=0, maximum=255, value=30, step=1)
                    color_tolerance = gr.Slider(label="Color Tolerance", minimum=0, maximum=255, value=20, step=1)
                
                with gr.Column():
                    gr.Markdown("### Effects")
                    invert_mask = gr.Checkbox(label="Invert Mask", value=False)
                    feather_amount = gr.Slider(label="Feather Amount", minimum=0, maximum=100, value=0, step=1)
                    edge_detection = gr.Checkbox(label="Edge Detection", value=False)
                    edge_thickness = gr.Slider(label="Edge Thickness", minimum=1, maximum=10, value=1, step=1)
                    edge_color = gr.ColorPicker(label="Edge Color", value="#FFFFFF")
                    shadow = gr.Checkbox(label="Shadow", value=False)
                    shadow_blur = gr.Slider(label="Shadow Blur", minimum=0, maximum=20, value=5, step=1)
                    shadow_opacity = gr.Slider(label="Shadow Opacity", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
                    color_adjustment = gr.Checkbox(label="Color Adjustment", value=False)
                    brightness = gr.Slider(label="Brightness", minimum=0.0, maximum=2.0, value=1.0, step=0.1)
                    contrast = gr.Slider(label="Contrast", minimum=0.0, maximum=2.0, value=1.0, step=0.1)
                    saturation = gr.Slider(label="Saturation", minimum=0.0, maximum=2.0, value=1.0, step=0.1)
                    mask_blur = gr.Slider(label="Mask Blur", minimum=0, maximum=100, value=0, step=1)
                    mask_expansion = gr.Slider(label="Mask Expansion", minimum=-100, maximum=100, value=0, step=1)

            with gr.Row():
                gr.Markdown("### Output Settings")
                image_format = gr.Dropdown(label="Image Format", choices=["PNG", "JPEG", "WEBP"], value="PNG")
                video_format = gr.Dropdown(label="Video Format", choices=["MP4", "AVI", "MOV"], value="MP4")
                video_quality = gr.Slider(label="Video Quality", minimum=0, maximum=100, value=95, step=1)
                use_custom_dimensions = gr.Checkbox(label="Use Custom Dimensions", value=False)
                custom_width = gr.Number(label="Custom Width", value=512, visible=False)
                custom_height = gr.Number(label="Custom Height", value=512, visible=False)
                output_dimension_source = gr.Radio(
                    label="Output Dimension Source",
                    choices=["Foreground", "Background"],
                    value="Foreground",
                    visible=True
                )

        run_button = gr.Button(label="Run GeekyRemB")

        def update_input_type(choice):
            return {
                foreground_input: gr.update(visible=choice == "Image"),
                foreground_video: gr.update(visible=choice == "Video"),
            }

        def update_output_type(choice):
            return {
                result_image: gr.update(visible=choice == "Image"),
                result_video: gr.update(visible=choice == "Video"),
            }

        def update_background_mode(mode):
            return {
                background_color: gr.update(visible=mode == "color"),
                background_image: gr.update(visible=mode == "image"),
                background_video: gr.update(visible=mode == "video"),
            }

        def update_custom_dimensions(use_custom):
            return {
                custom_width: gr.update(visible=use_custom),
                custom_height: gr.update(visible=use_custom),
                output_dimension_source: gr.update(visible=not use_custom)
            }

        def process_image(image, background_image, *args):
            geeky_remb = GeekyRemB()
            result, _ = geeky_remb.remove_background(image, background_image, *args)
            return result

        def process_video(video_path, background_video_path, *args):
            geeky_remb = GeekyRemB()
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
                output_path = temp_file.name
            geeky_remb.process_video(video_path, output_path, background_video_path, *args)
            return output_path

        def run_geeky_remb(input_type, foreground_input, foreground_video, result_type, model, output_format, 

                           alpha_matting, alpha_matting_foreground_threshold, alpha_matting_background_threshold, 

                           post_process_mask, chroma_key, chroma_threshold, color_tolerance, background_mode, 

                           background_color, background_image, background_video, invert_mask, feather_amount, 

                           edge_detection, edge_thickness, edge_color, shadow, shadow_blur, shadow_opacity, 

                           color_adjustment, brightness, contrast, saturation, x_position, y_position, rotation, 

                           opacity, flip_horizontal, flip_vertical, mask_blur, mask_expansion, foreground_scale, 

                           foreground_aspect_ratio, remove_background, image_format, video_format, video_quality,

                           use_custom_dimensions, custom_width, custom_height, output_dimension_source):
            
            args = (model, alpha_matting, alpha_matting_foreground_threshold,
                    alpha_matting_background_threshold, post_process_mask, chroma_key, chroma_threshold,
                    color_tolerance, background_mode, background_color, output_format,
                    invert_mask, feather_amount, edge_detection, edge_thickness, edge_color, shadow, shadow_blur,
                    shadow_opacity, color_adjustment, brightness, contrast, saturation, x_position,
                    y_position, rotation, opacity, flip_horizontal, flip_vertical, mask_blur,
                    mask_expansion, foreground_scale, foreground_aspect_ratio, remove_background,
                    use_custom_dimensions, custom_width, custom_height, output_dimension_source)

            if input_type == "Image" and result_type == "Image":
                result = process_image(foreground_input, background_image, *args)
                if image_format != "PNG":
                    result = result.convert("RGB")
                with tempfile.NamedTemporaryFile(delete=False, suffix=f".{image_format.lower()}") as temp_file:
                    result.save(temp_file.name, format=image_format, quality=95 if image_format == "JPEG" else None)
                    return temp_file.name, None
            elif input_type == "Video" and result_type == "Video":
                output_video = process_video(foreground_video, background_video if background_mode == "video" else None, *args)
                if video_format != "MP4":
                    temp_output = output_video + f"_temp.{video_format.lower()}"
                    os.system(f"ffmpeg -i {output_video} -c:v libx264 -crf {int(20 - (video_quality / 5))} {temp_output}")
                    os.remove(output_video)
                    output_video = temp_output
                return None, output_video
            elif input_type == "Image" and result_type == "Video":
                with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
                    output_path = temp_file.name
                frame = cv2.cvtColor(np.array(foreground_input), cv2.COLOR_RGB2BGR)
                height, width = frame.shape[:2]
                fourcc = cv2.VideoWriter_fourcc(*'mp4v')
                out = cv2.VideoWriter(output_path, fourcc, 24, (width, height))
                for _ in range(24 * 5):  # 5 seconds at 24 fps
                    out.write(frame)
                out.release()
                return None, process_video(output_path, background_video if background_mode == "video" else None, *args)
            elif input_type == "Video" and result_type == "Image":
                cap = cv2.VideoCapture(foreground_video)
                ret, frame = cap.read()
                cap.release()
                if ret:
                    pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
                    result = process_image(pil_frame, background_image, *args)
                    if image_format != "PNG":
                        result = result.convert("RGB")
                    with tempfile.NamedTemporaryFile(delete=False, suffix=f".{image_format.lower()}") as temp_file:
                        result.save(temp_file.name, format=image_format, quality=95 if image_format == "JPEG" else None)
                        return temp_file.name, None
                else:
                    return None, None

        input_type.change(update_input_type, inputs=[input_type], outputs=[foreground_input, foreground_video])
        result_type.change(update_output_type, inputs=[result_type], outputs=[result_image, result_video])
        background_mode.change(update_background_mode, inputs=[background_mode], outputs=[background_color, background_image, background_video])
        use_custom_dimensions.change(update_custom_dimensions, inputs=[use_custom_dimensions], outputs=[custom_width, custom_height, output_dimension_source])

        run_button.click(
            fn=run_geeky_remb,
            inputs=[
                input_type, foreground_input, foreground_video, result_type,
                model, output_format, alpha_matting, alpha_matting_foreground_threshold,
                alpha_matting_background_threshold, post_process_mask, chroma_key, chroma_threshold,
                color_tolerance, background_mode, background_color, background_image, background_video,
                invert_mask, feather_amount, edge_detection, edge_thickness, edge_color,
                shadow, shadow_blur, shadow_opacity, color_adjustment, brightness, contrast,
                saturation, x_position, y_position, rotation, opacity, flip_horizontal,
                flip_vertical, mask_blur, mask_expansion, foreground_scale, foreground_aspect_ratio,
                remove_background, image_format, video_format, video_quality,
                use_custom_dimensions, custom_width, custom_height, output_dimension_source
            ],
            outputs=[result_image, result_video]
        )

    return [(geeky_remb_tab, "GeekyRemB", "geeky_remb_tab")]

script_callbacks.on_ui_tabs(on_ui_tabs)