patrickvonplaten commited on
Commit
df3b621
·
1 Parent(s): 819a296
Files changed (1) hide show
  1. run_local_img2img_xl.py +8 -9
run_local_img2img_xl.py CHANGED
@@ -1,6 +1,7 @@
1
  #!/usr/bin/env python3
2
  from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler, StableDiffusionXLImg2ImgPipeline
3
  import time
 
4
  import os
5
  from huggingface_hub import HfApi
6
  # from compel import Compel
@@ -15,7 +16,7 @@ path = sys.argv[1]
15
 
16
  api = HfApi()
17
  start_time = time.time()
18
- pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16)
19
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
20
  # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
21
  # pipe = StableDiffusionImg2ImgXLPipeline.from_pretrained(path, torch_dtype=torch.float16, safety_checker=None
@@ -23,20 +24,18 @@ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
23
  # compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
24
 
25
 
26
- pipe = pipe.to("cuda")
27
-
28
- prompt = "A red castle on a beautiful landscape with a nice sunset"
29
 
30
 
31
  # pipe.unet.to(memory_format=torch.channels_last)
32
  # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
33
  # pipe(prompt=prompt, num_inference_steps=2).images[0]
34
- url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
35
-
36
- response = requests.get(url)
37
- init_image = Image.open(BytesIO(response.content)).convert("RGB").resize((1024, 1024))
38
 
39
- image = pipe(prompt=prompt, image=init_image, strength=0.9).images[0]
40
 
41
  file_name = f"aaa"
42
  path = os.path.join(Path.home(), "images", f"{file_name}.png")
 
1
  #!/usr/bin/env python3
2
  from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler, StableDiffusionXLImg2ImgPipeline
3
  import time
4
+ import numpy as np
5
  import os
6
  from huggingface_hub import HfApi
7
  # from compel import Compel
 
16
 
17
  api = HfApi()
18
  start_time = time.time()
19
+ pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(path)
20
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
21
  # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
22
  # pipe = StableDiffusionImg2ImgXLPipeline.from_pretrained(path, torch_dtype=torch.float16, safety_checker=None
 
24
  # compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
25
 
26
 
27
+ prompt = "An astronaut riding a green horse on Mars"
 
 
28
 
29
 
30
  # pipe.unet.to(memory_format=torch.channels_last)
31
  # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
32
  # pipe(prompt=prompt, num_inference_steps=2).images[0]
33
+ # url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
34
+ #
35
+ # response = requests.get(url)
36
+ init_image = torch.from_numpy(np.load("/home/patrick/images/xl_latents.npy"))
37
 
38
+ image = pipe(prompt=prompt, image=init_image).images[0]
39
 
40
  file_name = f"aaa"
41
  path = os.path.join(Path.home(), "images", f"{file_name}.png")