patrickvonplaten commited on
Commit
819a296
·
1 Parent(s): 2acb9f2
Files changed (2) hide show
  1. run_local_img2img_xl.py +12 -7
  2. run_local_xl.py +9 -3
run_local_img2img_xl.py CHANGED
@@ -1,5 +1,5 @@
1
  #!/usr/bin/env python3
2
- from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler
3
  import time
4
  import os
5
  from huggingface_hub import HfApi
@@ -15,23 +15,28 @@ path = sys.argv[1]
15
 
16
  api = HfApi()
17
  start_time = time.time()
18
- pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
19
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
20
  # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
21
- # pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16, safety_checker=None
22
 
23
  # compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
24
 
25
 
26
  pipe = pipe.to("cuda")
27
 
28
- prompt = "Elon Musk riding a green horse on Mars"
 
29
 
30
  # pipe.unet.to(memory_format=torch.channels_last)
31
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
32
- pipe(prompt=prompt, num_inference_steps=2).images[0]
 
 
 
 
33
 
34
- image = pipe(prompt=prompt).images[0]
35
 
36
  file_name = f"aaa"
37
  path = os.path.join(Path.home(), "images", f"{file_name}.png")
 
1
  #!/usr/bin/env python3
2
+ from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler, StableDiffusionXLImg2ImgPipeline
3
  import time
4
  import os
5
  from huggingface_hub import HfApi
 
15
 
16
  api = HfApi()
17
  start_time = time.time()
18
+ pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16)
19
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
20
  # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
21
+ # pipe = StableDiffusionImg2ImgXLPipeline.from_pretrained(path, torch_dtype=torch.float16, safety_checker=None
22
 
23
  # compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
24
 
25
 
26
  pipe = pipe.to("cuda")
27
 
28
+ prompt = "A red castle on a beautiful landscape with a nice sunset"
29
+
30
 
31
  # pipe.unet.to(memory_format=torch.channels_last)
32
+ # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
33
+ # pipe(prompt=prompt, num_inference_steps=2).images[0]
34
+ url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
35
+
36
+ response = requests.get(url)
37
+ init_image = Image.open(BytesIO(response.content)).convert("RGB").resize((1024, 1024))
38
 
39
+ image = pipe(prompt=prompt, image=init_image, strength=0.9).images[0]
40
 
41
  file_name = f"aaa"
42
  path = os.path.join(Path.home(), "images", f"{file_name}.png")
run_local_xl.py CHANGED
@@ -28,10 +28,16 @@ pipe = pipe.to("cuda")
28
  prompt = "Elon Musk riding a green horse on Mars"
29
 
30
  # pipe.unet.to(memory_format=torch.channels_last)
31
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
32
- pipe(prompt=prompt, num_inference_steps=2).images[0]
33
 
34
- image = pipe(prompt=prompt).images[0]
 
 
 
 
 
 
35
 
36
  file_name = f"aaa"
37
  path = os.path.join(Path.home(), "images", f"{file_name}.png")
 
28
  prompt = "Elon Musk riding a green horse on Mars"
29
 
30
  # pipe.unet.to(memory_format=torch.channels_last)
31
+ # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
32
+ # pipe(prompt=prompt, num_inference_steps=2).images[0]
33
 
34
+ image = pipe(prompt=prompt, num_images_per_prompt=1, num_inference_steps=40, output_type="latent").images
35
+ pipe.to("cpu")
36
+
37
+ pipe = DiffusionPipeline.from_pretrained("/home/patrick/diffusers-sd-xl/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16)
38
+ pipe.to("cuda")
39
+
40
+ image = pipe(prompt=prompt, image=image, strength=0.5).images[0]
41
 
42
  file_name = f"aaa"
43
  path = os.path.join(Path.home(), "images", f"{file_name}.png")