|
|
|
from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler |
|
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler |
|
import time |
|
import os |
|
from huggingface_hub import HfApi |
|
from compel import Compel |
|
import torch |
|
import sys |
|
from pathlib import Path |
|
|
|
path = sys.argv[1] |
|
|
|
api = HfApi() |
|
start_time = time.time() |
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder) |
|
|
|
|
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "a highly realistic photo of green turtle" |
|
|
|
prompts = ["a cat playing with a ball++ in the forest", "a cat playing with a ball++ in the forest", "a cat playing with a ball-- in the forest"] |
|
|
|
prompt_embeds = torch.cat([compel.build_conditioning_tensor(prompt) for prompt in prompts]) |
|
|
|
generator = [torch.Generator(device="cuda").manual_seed(0) for _ in range(prompt_embeds.shape[0])] |
|
images = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=15).images |
|
|
|
print("Time", time.time() - start_time) |
|
|
|
for i, image in enumerate(image): |
|
path = os.path.join(Path.home(), "images", f"aa_{i}.png") |
|
image.save(path) |
|
|
|
api.upload_file( |
|
path_or_fileobj=path, |
|
path_in_repo=path.split("/")[-1], |
|
repo_id="patrickvonplaten/images", |
|
repo_type="dataset", |
|
) |
|
print(f"https://huggingface.co./datasets/patrickvonplaten/images/blob/main/aa_{i}.png") |
|
|