#!/usr/bin/env python3 from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler import time import os from huggingface_hub import HfApi from compel import Compel import torch import sys from pathlib import Path path = sys.argv[1] api = HfApi() start_time = time.time() #pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, device_map="auto") #pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder) pipe = pipe.to("cuda") prompt = "a highly realistic photo of green turtle" prompts = ["a cat playing with a ball++ in the forest", "a cat playing with a ball++ in the forest", "a cat playing with a ball-- in the forest"] prompt_embeds = torch.cat([compel.build_conditioning_tensor(prompt) for prompt in prompts]) generator = [torch.Generator(device="cuda").manual_seed(0) for _ in range(prompt_embeds.shape[0])] images = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=15).images print("Time", time.time() - start_time) for i, image in enumerate(image): path = os.path.join(Path.home(), "images", f"aa_{i}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co./datasets/patrickvonplaten/images/blob/main/aa_{i}.png")