|
# Diffusers Tools |
|
|
|
This is a collection of scripts that can be useful for various tasks related to the [diffusers library](https://github.com/huggingface/diffusers) |
|
|
|
## 1. Test against original checkpoints |
|
|
|
**It's very important to have visually the exact same results as the original code bases.!** |
|
|
|
E.g. to make use `diffusers` is identical to the original [CompVis codebase](https://github.com/CompVis/stable-diffusion), you can run the following script in the original CompVis codebase: |
|
|
|
1. Download the original [SD-1-4 checkpoint](https://huggingface.co./CompVis/stable-diffusion-v1-4) and put it in the correct folder following the instructions on: https://github.com/CompVis/stable-diffusion |
|
|
|
2. Run the following command |
|
``` |
|
python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 0 --n_samples 1 --n_rows 1 --n_iter 1 |
|
``` |
|
|
|
and compare this to the same command in diffusers: |
|
|
|
```python |
|
from diffusers import DiffusionPipeline, StableDiffusionPipeline, DDIMScheduler |
|
import torch |
|
|
|
# python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 0 --n_samples 1 --n_rows 1 --n_iter 1 |
|
seed = 0 |
|
|
|
prompt = "a photograph of an astronaut riding a horse" |
|
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
|
|
pipe = pipe.to("cuda") |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
torch.manual_seed(0) |
|
image = pipe(prompt, num_inference_steps=50).images[0] |
|
|
|
image.save("/home/patrick_huggingface_co/images/aa_comp.png") |
|
``` |
|
|
|
Both commands should give the following image on a V100: |
|
|
|
|
|
## 2. Test against [k-diffusion](https://github.com/crowsonkb/k-diffusion): |
|
|
|
You can run the following script to compare against k-diffusion. |
|
|
|
See results [here](https://huggingface.co./datasets/patrickvonplaten/images) |
|
|
|
```python |
|
from diffusers import StableDiffusionKDiffusionPipeline, HeunDiscreteScheduler, StableDiffusionPipeline, DPMSolverMultistepScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler |
|
import torch |
|
import os |
|
|
|
seed = 13 |
|
inference_steps = 25 |
|
#checkpoint = "CompVis/stable-diffusion-v1-4" |
|
checkpoint = "stabilityai/stable-diffusion-2-1" |
|
prompts = ["astronaut riding horse", "whale falling from sky", "magical forest", "highly photorealistic picture of johnny depp"] |
|
prompts = 8 * ["highly photorealistic picture of johnny depp"] |
|
#prompts = prompts[:1] |
|
samplers = ["sample_dpmpp_2m", "sample_euler", "sample_heun", "sample_dpm_2", "sample_lms"] |
|
#samplers = samplers[:1] |
|
|
|
pipe = StableDiffusionKDiffusionPipeline.from_pretrained(checkpoint, torch_dtype=torch.float16, safety_checker=None) |
|
pipe = pipe.to("cuda") |
|
|
|
for i, prompt in enumerate(prompts): |
|
prompt_f = f"{'_'.join(prompt.split())}_{i}" |
|
for sampler in samplers: |
|
pipe.set_scheduler(sampler) |
|
torch.manual_seed(seed + i) |
|
image = pipe(prompt, num_inference_steps=inference_steps).images[0] |
|
checkpoint_f = f"{'--'.join(checkpoint.split('/'))}" |
|
os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}", exist_ok=True) |
|
os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}", exist_ok=True) |
|
image.save(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}/{prompt_f}.png") |
|
|
|
|
|
pipe = StableDiffusionPipeline(**pipe.components) |
|
pipe = pipe.to("cuda") |
|
|
|
for i, prompt in enumerate(prompts): |
|
prompt_f = f"{'_'.join(prompt.split())}_{i}" |
|
for sampler in samplers: |
|
if sampler == "sample_euler": |
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) |
|
elif sampler == "sample_heun": |
|
pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) |
|
elif sampler == "sample_dpmpp_2m": |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
elif sampler == "sample_lms": |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
torch.manual_seed(seed + i) |
|
image = pipe(prompt, num_inference_steps=inference_steps).images[0] |
|
checkpoint_f = f"{'--'.join(checkpoint.split('/'))}" |
|
os.makedirs("/home/patrick_huggingface_co/images/{checkpoint_f}", exist_ok=True) |
|
os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}", exist_ok=True) |
|
image.save(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}/{prompt_f}_hf.png") |
|
``` |
|
|