Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,157 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
-
|
4 |
tags:
|
5 |
-
- stable-diffusion
|
|
|
6 |
- text-to-image
|
7 |
-
|
8 |
-
|
|
|
9 |
---
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
license: openrail++
|
4 |
+
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
5 |
tags:
|
6 |
+
- stable-diffusion-xl
|
7 |
+
- stable-diffusion-xl-diffusers
|
8 |
- text-to-image
|
9 |
+
- diffusers
|
10 |
+
- controlnet
|
11 |
+
inference: false
|
12 |
---
|
13 |
+
|
14 |
+
# SDXL-controlnet: Zoe-Depth
|
15 |
+
|
16 |
+
These are ControlNet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with zoe depth conditioning. [Zoe-depth](https://github.com/isl-org/ZoeDepth) is an open-source SOTA depth estimation model which produces high-quality depth maps, which are better suited for conditioning.
|
17 |
+
|
18 |
+
You can find some example images in the following.
|
19 |
+
|
20 |
+
![images_0)](./zoe-depth-example.png)
|
21 |
+
|
22 |
+
![images_2](./zoe-megatron.png)
|
23 |
+
|
24 |
+
![images_3](./photo-woman.png)
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
|
28 |
+
Make sure first to install the libraries:
|
29 |
+
|
30 |
+
```bash
|
31 |
+
pip install accelerate transformers safetensors diffusers
|
32 |
+
```
|
33 |
+
|
34 |
+
And then setup the zoe-depth model
|
35 |
+
|
36 |
+
```
|
37 |
+
import torch
|
38 |
+
import matplotlib
|
39 |
+
import matplotlib.cm
|
40 |
+
import numpy as np
|
41 |
+
|
42 |
+
torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) # Triggers fresh download of MiDaS repo
|
43 |
+
model_zoe_n = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).eval()
|
44 |
+
model_zoe_n = model_zoe_n.to("cuda")
|
45 |
+
|
46 |
+
|
47 |
+
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
48 |
+
if isinstance(value, torch.Tensor):
|
49 |
+
value = value.detach().cpu().numpy()
|
50 |
+
|
51 |
+
value = value.squeeze()
|
52 |
+
if invalid_mask is None:
|
53 |
+
invalid_mask = value == invalid_val
|
54 |
+
mask = np.logical_not(invalid_mask)
|
55 |
+
|
56 |
+
# normalize
|
57 |
+
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
58 |
+
vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
59 |
+
if vmin != vmax:
|
60 |
+
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
61 |
+
else:
|
62 |
+
# Avoid 0-division
|
63 |
+
value = value * 0.
|
64 |
+
|
65 |
+
# squeeze last dim if it exists
|
66 |
+
# grey out the invalid values
|
67 |
+
|
68 |
+
value[invalid_mask] = np.nan
|
69 |
+
cmapper = matplotlib.cm.get_cmap(cmap)
|
70 |
+
if value_transform:
|
71 |
+
value = value_transform(value)
|
72 |
+
# value = value / value.max()
|
73 |
+
value = cmapper(value, bytes=True) # (nxmx4)
|
74 |
+
|
75 |
+
# img = value[:, :, :]
|
76 |
+
img = value[...]
|
77 |
+
img[invalid_mask] = background_color
|
78 |
+
|
79 |
+
# gamma correction
|
80 |
+
img = img / 255
|
81 |
+
img = np.power(img, 2.2)
|
82 |
+
img = img * 255
|
83 |
+
img = img.astype(np.uint8)
|
84 |
+
img = Image.fromarray(img)
|
85 |
+
return img
|
86 |
+
|
87 |
+
|
88 |
+
def get_zoe_depth_map(image):
|
89 |
+
with torch.autocast("cuda", enabled=True):
|
90 |
+
depth = model_zoe_n.infer_pil(image)
|
91 |
+
depth = colorize(depth, cmap="gray_r")
|
92 |
+
return depth
|
93 |
+
```
|
94 |
+
|
95 |
+
Now we're ready to go:
|
96 |
+
|
97 |
+
```python
|
98 |
+
import torch
|
99 |
+
import numpy as np
|
100 |
+
from PIL import Image
|
101 |
+
|
102 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
103 |
+
from diffusers.utils import load_image
|
104 |
+
|
105 |
+
controlnet = ControlNetModel.from_pretrained(
|
106 |
+
"diffusers/controlnet-zoe-depth-sdxl-1.0",
|
107 |
+
use_safetensors=True,
|
108 |
+
torch_dtype=torch.float16,
|
109 |
+
).to("cuda")
|
110 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
111 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
112 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
113 |
+
controlnet=controlnet,
|
114 |
+
vae=vae,
|
115 |
+
variant="fp16",
|
116 |
+
use_safetensors=True,
|
117 |
+
torch_dtype=torch.float16,
|
118 |
+
).to("cuda")
|
119 |
+
pipe.enable_model_cpu_offload()
|
120 |
+
|
121 |
+
|
122 |
+
prompt = "pixel-art margot robbie as barbie, in a coupé . low-res, blocky, pixel art style, 8-bit graphics"
|
123 |
+
negative_prompt = "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"
|
124 |
+
image = load_image("https://media.vogue.fr/photos/62bf04b69a57673c725432f3/3:2/w_1793,h_1195,c_limit/rev-1-Barbie-InstaVert_High_Res_JPEG.jpeg")
|
125 |
+
|
126 |
+
controlnet_conditioning_scale = 0.55
|
127 |
+
|
128 |
+
depth_image = get_zoe_depth_map(image).resize((1088, 896))
|
129 |
+
|
130 |
+
generator = torch.Generator("cuda").manual_seed(978364352)
|
131 |
+
images = pipe(
|
132 |
+
prompt, image=depth_image, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator
|
133 |
+
).images
|
134 |
+
images[0]
|
135 |
+
|
136 |
+
images[0].save(f"pixel-barbie.png")
|
137 |
+
```
|
138 |
+
|
139 |
+
![images_1)](./barbie.png)
|
140 |
+
|
141 |
+
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
142 |
+
|
143 |
+
### Training
|
144 |
+
|
145 |
+
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
|
146 |
+
|
147 |
+
#### Training data and Compute
|
148 |
+
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
149 |
+
|
150 |
+
#### Batch size
|
151 |
+
Data parallel with a single gpu batch size of 8 for a total batch size of 256.
|
152 |
+
|
153 |
+
#### Hyper Parameters
|
154 |
+
Constant learning rate of 1e-5.
|
155 |
+
|
156 |
+
#### Mixed precision
|
157 |
+
fp16
|