patrickvonplaten
commited on
Commit
•
9b12cba
1
Parent(s):
4596fc2
Add 1 files
Browse files
README.md
CHANGED
@@ -1,157 +1,10 @@
|
|
1 |
-
|
2 |
---
|
3 |
-
|
4 |
-
|
5 |
tags:
|
6 |
-
- stable-diffusion
|
7 |
-
- stable-diffusion-xl-diffusers
|
8 |
- text-to-image
|
9 |
-
-
|
10 |
-
|
11 |
-
inference: false
|
12 |
---
|
13 |
-
|
14 |
-
# SDXL-controlnet: Zoe-Depth
|
15 |
-
|
16 |
-
These are ControlNet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with zoe depth conditioning. [Zoe-depth](https://github.com/isl-org/ZoeDepth) is an open-source SOTA depth estimation model which produces high-quality depth maps, which are better suited for conditioning.
|
17 |
-
|
18 |
-
You can find some example images in the following.
|
19 |
-
|
20 |
-
![images_0)](./zoe-depth-example.png)
|
21 |
-
|
22 |
-
![images_2](./zoe-megatron.png)
|
23 |
-
|
24 |
-
![images_3](./photo-woman.png)
|
25 |
-
|
26 |
-
## Usage
|
27 |
-
|
28 |
-
Make sure first to install the libraries:
|
29 |
-
|
30 |
-
```bash
|
31 |
-
pip install accelerate transformers safetensors diffusers
|
32 |
-
```
|
33 |
-
|
34 |
-
And then setup the zoe-depth model
|
35 |
-
|
36 |
-
```
|
37 |
-
import torch
|
38 |
-
import matplotlib
|
39 |
-
import matplotlib.cm
|
40 |
-
import numpy as np
|
41 |
-
|
42 |
-
torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) # Triggers fresh download of MiDaS repo
|
43 |
-
model_zoe_n = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).eval()
|
44 |
-
model_zoe_n = model_zoe_n.to("cuda")
|
45 |
-
|
46 |
-
|
47 |
-
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
48 |
-
if isinstance(value, torch.Tensor):
|
49 |
-
value = value.detach().cpu().numpy()
|
50 |
-
|
51 |
-
value = value.squeeze()
|
52 |
-
if invalid_mask is None:
|
53 |
-
invalid_mask = value == invalid_val
|
54 |
-
mask = np.logical_not(invalid_mask)
|
55 |
-
|
56 |
-
# normalize
|
57 |
-
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
58 |
-
vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
59 |
-
if vmin != vmax:
|
60 |
-
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
61 |
-
else:
|
62 |
-
# Avoid 0-division
|
63 |
-
value = value * 0.
|
64 |
-
|
65 |
-
# squeeze last dim if it exists
|
66 |
-
# grey out the invalid values
|
67 |
-
|
68 |
-
value[invalid_mask] = np.nan
|
69 |
-
cmapper = matplotlib.cm.get_cmap(cmap)
|
70 |
-
if value_transform:
|
71 |
-
value = value_transform(value)
|
72 |
-
# value = value / value.max()
|
73 |
-
value = cmapper(value, bytes=True) # (nxmx4)
|
74 |
-
|
75 |
-
# img = value[:, :, :]
|
76 |
-
img = value[...]
|
77 |
-
img[invalid_mask] = background_color
|
78 |
-
|
79 |
-
# gamma correction
|
80 |
-
img = img / 255
|
81 |
-
img = np.power(img, 2.2)
|
82 |
-
img = img * 255
|
83 |
-
img = img.astype(np.uint8)
|
84 |
-
img = Image.fromarray(img)
|
85 |
-
return img
|
86 |
-
|
87 |
-
|
88 |
-
def get_zoe_depth_map(image):
|
89 |
-
with torch.autocast("cuda", enabled=True):
|
90 |
-
depth = model_zoe_n.infer_pil(image)
|
91 |
-
depth = colorize(depth, cmap="gray_r")
|
92 |
-
return depth
|
93 |
-
```
|
94 |
-
|
95 |
-
Now we're ready to go:
|
96 |
-
|
97 |
-
```python
|
98 |
-
import torch
|
99 |
-
import numpy as np
|
100 |
-
from PIL import Image
|
101 |
-
|
102 |
-
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
103 |
-
from diffusers.utils import load_image
|
104 |
-
|
105 |
-
controlnet = ControlNetModel.from_pretrained(
|
106 |
-
"diffusers/controlnet-zoe-depth-sdxl-1.0",
|
107 |
-
use_safetensors=True,
|
108 |
-
torch_dtype=torch.float16,
|
109 |
-
).to("cuda")
|
110 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
111 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
112 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
113 |
-
controlnet=controlnet,
|
114 |
-
vae=vae,
|
115 |
-
variant="fp16",
|
116 |
-
use_safetensors=True,
|
117 |
-
torch_dtype=torch.float16,
|
118 |
-
).to("cuda")
|
119 |
-
pipe.enable_model_cpu_offload()
|
120 |
-
|
121 |
-
|
122 |
-
prompt = "pixel-art margot robbie as barbie, in a coupé . low-res, blocky, pixel art style, 8-bit graphics"
|
123 |
-
negative_prompt = "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"
|
124 |
-
image = load_image("https://media.vogue.fr/photos/62bf04b69a57673c725432f3/3:2/w_1793,h_1195,c_limit/rev-1-Barbie-InstaVert_High_Res_JPEG.jpeg")
|
125 |
-
|
126 |
-
controlnet_conditioning_scale = 0.55
|
127 |
-
|
128 |
-
depth_image = get_zoe_depth_map(image).resize((1088, 896))
|
129 |
-
|
130 |
-
generator = torch.Generator("cuda").manual_seed(978364352)
|
131 |
-
images = pipe(
|
132 |
-
prompt, image=depth_image, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator
|
133 |
-
).images
|
134 |
-
images[0]
|
135 |
-
|
136 |
-
images[0].save(f"pixel-barbie.png")
|
137 |
-
```
|
138 |
-
|
139 |
-
![images_1)](./barbie.png)
|
140 |
-
|
141 |
-
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
142 |
-
|
143 |
-
### Training
|
144 |
-
|
145 |
-
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
|
146 |
-
|
147 |
-
#### Training data and Compute
|
148 |
-
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
149 |
-
|
150 |
-
#### Batch size
|
151 |
-
Data parallel with a single gpu batch size of 8 for a total batch size of 256.
|
152 |
-
|
153 |
-
#### Hyper Parameters
|
154 |
-
Constant learning rate of 1e-5.
|
155 |
-
|
156 |
-
#### Mixed precision
|
157 |
-
fp16
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
tags:
|
5 |
+
- stable-diffusion
|
|
|
6 |
- text-to-image
|
7 |
+
license: creativeml-openrail-m
|
8 |
+
inference: true
|
|
|
9 |
---
|
10 |
+
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|