|
|
|
--- |
|
license: openrail++ |
|
base_model: stabilityai/stable-diffusion-xl-base-1.0 |
|
tags: |
|
- stable-diffusion-xl |
|
- stable-diffusion-xl-diffusers |
|
- text-to-image |
|
- diffusers |
|
- controlnet |
|
inference: false |
|
--- |
|
|
|
# SDXL-controlnet: Zoe-Depth |
|
|
|
These are ControlNet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with zoe depth conditioning. [Zoe-depth](https://github.com/isl-org/ZoeDepth) is an open-source SOTA depth estimation model which produces high-quality depth maps, which are better suited for conditioning. |
|
|
|
You can find some example images in the following. |
|
|
|
![images_0)](./zoe-depth-example.png) |
|
|
|
![images_2](./zoe-megatron.png) |
|
|
|
![images_3](./photo-woman.png) |
|
|
|
## Usage |
|
|
|
Make sure first to install the libraries: |
|
|
|
```bash |
|
pip install accelerate transformers safetensors diffusers |
|
``` |
|
|
|
And then setup the zoe-depth model |
|
|
|
```python |
|
import torch |
|
import matplotlib |
|
import matplotlib.cm |
|
import numpy as np |
|
|
|
torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) # Triggers fresh download of MiDaS repo |
|
model_zoe_n = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).eval() |
|
model_zoe_n = model_zoe_n.to("cuda") |
|
|
|
|
|
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None): |
|
if isinstance(value, torch.Tensor): |
|
value = value.detach().cpu().numpy() |
|
|
|
value = value.squeeze() |
|
if invalid_mask is None: |
|
invalid_mask = value == invalid_val |
|
mask = np.logical_not(invalid_mask) |
|
|
|
# normalize |
|
vmin = np.percentile(value[mask],2) if vmin is None else vmin |
|
vmax = np.percentile(value[mask],85) if vmax is None else vmax |
|
if vmin != vmax: |
|
value = (value - vmin) / (vmax - vmin) # vmin..vmax |
|
else: |
|
# Avoid 0-division |
|
value = value * 0. |
|
|
|
# squeeze last dim if it exists |
|
# grey out the invalid values |
|
|
|
value[invalid_mask] = np.nan |
|
cmapper = matplotlib.cm.get_cmap(cmap) |
|
if value_transform: |
|
value = value_transform(value) |
|
# value = value / value.max() |
|
value = cmapper(value, bytes=True) # (nxmx4) |
|
|
|
# img = value[:, :, :] |
|
img = value[...] |
|
img[invalid_mask] = background_color |
|
|
|
# gamma correction |
|
img = img / 255 |
|
img = np.power(img, 2.2) |
|
img = img * 255 |
|
img = img.astype(np.uint8) |
|
img = Image.fromarray(img) |
|
return img |
|
|
|
|
|
def get_zoe_depth_map(image): |
|
with torch.autocast("cuda", enabled=True): |
|
depth = model_zoe_n.infer_pil(image) |
|
depth = colorize(depth, cmap="gray_r") |
|
return depth |
|
``` |
|
|
|
Now we're ready to go: |
|
|
|
```python |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
|
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL |
|
from diffusers.utils import load_image |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-zoe-depth-sdxl-1.0", |
|
use_safetensors=True, |
|
torch_dtype=torch.float16, |
|
) |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
controlnet=controlnet, |
|
vae=vae, |
|
variant="fp16", |
|
use_safetensors=True, |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
prompt = "pixel-art margot robbie as barbie, in a coupé . low-res, blocky, pixel art style, 8-bit graphics" |
|
negative_prompt = "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic" |
|
image = load_image("https://media.vogue.fr/photos/62bf04b69a57673c725432f3/3:2/w_1793,h_1195,c_limit/rev-1-Barbie-InstaVert_High_Res_JPEG.jpeg") |
|
|
|
controlnet_conditioning_scale = 0.55 |
|
|
|
depth_image = get_zoe_depth_map(image).resize((1088, 896)) |
|
|
|
generator = torch.Generator("cuda").manual_seed(978364352) |
|
images = pipe( |
|
prompt, image=depth_image, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator |
|
).images |
|
images[0] |
|
|
|
images[0].save(f"pixel-barbie.png") |
|
``` |
|
|
|
![images_1)](./barbie.png) |
|
|
|
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co./docs/diffusers/main/en/api/pipelines/controlnet_sdxl). |
|
|
|
### Training |
|
|
|
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md). |
|
|
|
#### Training data and Compute |
|
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs. |
|
|
|
#### Batch size |
|
Data parallel with a single gpu batch size of 8 for a total batch size of 256. |
|
|
|
#### Hyper Parameters |
|
Constant learning rate of 1e-5. |
|
|
|
#### Mixed precision |
|
fp16 |