File size: 25,680 Bytes
2618264 dc318e0 920c896 dc318e0 2618264 c397e3d 88c6751 2618264 920c896 c397e3d 920c896 2618264 c397e3d 920c896 2618264 920c896 2618264 920c896 c397e3d 920c896 c397e3d 920c896 c397e3d 920c896 26aea07 920c896 26aea07 920c896 26aea07 920c896 c397e3d 920c896 c397e3d 920c896 26aea07 920c896 26aea07 920c896 26aea07 920c896 26aea07 920c896 2cdc088 920c896 c397e3d 920c896 c397e3d 920c896 c397e3d 920c896 26aea07 920c896 26aea07 920c896 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
from dataclasses import dataclass
import math
from operator import itemgetter
import torch
from torch import nn
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
from transformers.models.bert.modeling_bert import BertOnlyMLMHead
from transformers.utils import ModelOutput
from .BertForSyntaxParsing import BertSyntaxParsingHead, SyntaxLabels, SyntaxLogitsOutput, parse_logits as syntax_parse_logits
from .BertForPrefixMarking import BertPrefixMarkingHead, parse_logits as prefix_parse_logits, encode_sentences_for_bert_for_prefix_marking, get_prefixes_from_str
from .BertForMorphTagging import BertMorphTaggingHead, MorphLogitsOutput, MorphLabels, parse_logits as morph_parse_logits
import warnings
@dataclass
class JointParsingOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
# logits will contain the optional predictions for the given labels
logits: Optional[Union[SyntaxLogitsOutput, None]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# if no labels are given, we will always include the syntax logits separately
syntax_logits: Optional[SyntaxLogitsOutput] = None
ner_logits: Optional[torch.FloatTensor] = None
prefix_logits: Optional[torch.FloatTensor] = None
lex_logits: Optional[torch.FloatTensor] = None
morph_logits: Optional[MorphLogitsOutput] = None
# wrapper class to wrap a torch.nn.Module so that you can store a module in multiple linked
# properties without registering the parameter multiple times
class ModuleRef:
def __init__(self, module: torch.nn.Module):
self.module = module
def forward(self, *args, **kwargs):
return self.module.forward(*args, **kwargs)
def __call__(self, *args, **kwargs):
return self.module(*args, **kwargs)
class BertForJointParsing(BertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config, do_syntax=None, do_ner=None, do_prefix=None, do_lex=None, do_morph=None, syntax_head_size=64):
super().__init__(config)
self.bert = BertModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# create all the heads as None, and then populate them as defined
self.syntax, self.ner, self.prefix, self.lex, self.morph = (None,)*5
if do_syntax is not None:
config.do_syntax = do_syntax
config.syntax_head_size = syntax_head_size
if do_ner is not None: config.do_ner = do_ner
if do_prefix is not None: config.do_prefix = do_prefix
if do_lex is not None: config.do_lex = do_lex
if do_morph is not None: config.do_morph = do_morph
# add all the individual heads
if config.do_syntax:
self.syntax = BertSyntaxParsingHead(config)
if config.do_ner:
self.num_labels = config.num_labels
self.classifier = nn.Linear(config.hidden_size, config.num_labels) # name it same as in BertForTokenClassification
self.ner = ModuleRef(self.classifier)
if config.do_prefix:
self.prefix = BertPrefixMarkingHead(config)
if config.do_lex:
self.cls = BertOnlyMLMHead(config) # name it the same as in BertForMaskedLM
self.lex = ModuleRef(self.cls)
if config.do_morph:
self.morph = BertMorphTaggingHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder if self.lex is not None else None
def set_output_embeddings(self, new_embeddings):
if self.lex is not None:
self.cls.predictions.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
prefix_class_id_options: Optional[torch.Tensor] = None,
labels: Optional[Union[SyntaxLabels, MorphLabels, torch.Tensor]] = None,
labels_type: Optional[Literal['syntax', 'ner', 'prefix', 'lex', 'morph']] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
compute_syntax_mst: Optional[bool] = None
):
if return_dict is False:
warnings.warn("Specified `return_dict=False` but the flag is ignored and treated as always True in this model.")
if labels is not None and labels_type is None:
raise ValueError("Cannot specify labels without labels_type")
if labels_type == 'seg' and prefix_class_id_options is None:
raise ValueError('Cannot calculate prefix logits without prefix_class_id_options')
if compute_syntax_mst is not None and self.syntax is None:
raise ValueError("Cannot compute syntax MST when the syntax head isn't loaded")
bert_outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
# calculate the extended attention mask for any child that might need it
extended_attention_mask = None
if attention_mask is not None:
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size())
# extract the hidden states, and apply the dropout
hidden_states = self.dropout(bert_outputs[0])
logits = None
syntax_logits = None
ner_logits = None
prefix_logits = None
lex_logits = None
morph_logits = None
# Calculate the syntax
if self.syntax is not None and (labels is None or labels_type == 'syntax'):
# apply the syntax head
loss, syntax_logits = self.syntax(hidden_states, extended_attention_mask, labels, compute_syntax_mst)
logits = syntax_logits
# Calculate the NER
if self.ner is not None and (labels is None or labels_type == 'ner'):
ner_logits = self.ner(hidden_states)
logits = ner_logits
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
# Calculate the segmentation
if self.prefix is not None and (labels is None or labels_type == 'prefix'):
loss, prefix_logits = self.prefix(hidden_states, prefix_class_id_options, labels)
logits = prefix_logits
# Calculate the lexeme
if self.lex is not None and (labels is None or labels_type == 'lex'):
lex_logits = self.lex(hidden_states)
logits = lex_logits
if labels is not None:
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
loss = loss_fct(lex_logits.view(-1, self.config.vocab_size), labels.view(-1))
if self.morph is not None and (labels is None or labels_type == 'morph'):
loss, morph_logits = self.morph(hidden_states, labels)
logits = morph_logits
# no labels => logits = None
if labels is None: logits = None
return JointParsingOutput(
loss,
logits,
hidden_states=bert_outputs.hidden_states,
attentions=bert_outputs.attentions,
# all the predicted logits section
syntax_logits=syntax_logits,
ner_logits=ner_logits,
prefix_logits=prefix_logits,
lex_logits=lex_logits,
morph_logits=morph_logits
)
def predict(self, sentences: Union[str, List[str]], tokenizer: BertTokenizerFast, padding='longest', truncation=True, compute_syntax_mst=True, per_token_ner=False, output_style: Literal['json', 'ud', 'iahlt_ud'] = 'json'):
"""
Predicts various linguistic features using the DictaBERT model.
This function takes a sentence or a list of sentences in Hebrew and applies the BERT model to predict multiple linguistic attributes simultaneously. These include syntax, named entity recognition (NER), morphological analysis, lexical information, and text segmentation.
Parameters:
sentences (Union[str, List[str]]): A single sentence or a list of sentences in Hebrew.
tokenizer (BertTokenizerFast): The tokenizer used for preprocessing the input sentences.
padding (str, optional): The strategy for padding sentences. Defaults to 'longest'.
truncation (bool, optional): Flag to enable or disable truncation. Defaults to True.
compute_syntax_mst (bool, optional): If True, computes the maximum spanning tree for syntax prediction. Defaults to True.
per_token_ner (bool, optional): If True, performs NER for each token. Defaults to False.
output_style (Literal['json', 'ud', 'iahlt_ud'], optional): The format of the output. Choices are 'json', 'ud' (Universal Dependencies), or 'iahlt_ud' (UD in the style of IAHLT). Defaults to 'json'.
Returns:
Depending on the output_style chosen, returns the linguistic analysis in the specified format.
The function is integral for comprehensive linguistic analysis in applications involving Hebrew text, catering to a variety of NLP tasks.
"""
is_single_sentence = isinstance(sentences, str)
if is_single_sentence:
sentences = [sentences]
if output_style not in ['json', 'ud', 'iahlt_ud']:
raise ValueError('output_style must be in json/ud/iahlt_ud')
if output_style in ['ud', 'iahlt_ud'] and (self.prefix is None or self.morph is None or self.syntax is None or self.lex is None):
raise ValueError("Cannot output UD format when any of the prefix,morph,syntax, and lex heads aren't loaded.")
# predict the logits for the sentence
if self.prefix is not None:
inputs = encode_sentences_for_bert_for_prefix_marking(tokenizer, sentences, padding)
else:
inputs = tokenizer(sentences, padding=padding, truncation=truncation, return_tensors='pt')
# Copy the tensors to the right device, and parse!
inputs = {k:v.to(self.device) for k,v in inputs.items()}
output = self.forward(**inputs, return_dict=True, compute_syntax_mst=compute_syntax_mst)
final_output = [dict(text=sentence, tokens=[dict(token=t) for t in combine_token_wordpieces(ids, tokenizer)]) for sentence, ids in zip(sentences, inputs['input_ids'])]
# Syntax logits: each sentence gets a dict(tree: List[dict(word,dep_head,dep_head_idx,dep_func)], root_idx: int)
if output.syntax_logits is not None:
for sent_idx,parsed in enumerate(syntax_parse_logits(inputs, sentences, tokenizer, output.syntax_logits)):
merge_token_list(final_output[sent_idx]['tokens'], parsed['tree'], 'syntax')
final_output[sent_idx]['root_idx'] = parsed['root_idx']
# Prefix logits: each sentence gets a list([prefix_segment, word_without_prefix]) - **WITH CLS & SEP**
if output.prefix_logits is not None:
for sent_idx,parsed in enumerate(prefix_parse_logits(inputs, sentences, tokenizer, output.prefix_logits)):
merge_token_list(final_output[sent_idx]['tokens'], map(tuple, parsed[1:-1]), 'seg')
# Lex logits each sentence gets a list(tuple(word, lexeme))
if output.lex_logits is not None:
for sent_idx, parsed in enumerate(lex_parse_logits(inputs, sentences, tokenizer, output.lex_logits)):
merge_token_list(final_output[sent_idx]['tokens'], map(itemgetter(1), parsed), 'lex')
# morph logits each sentences get a dict(text=str, tokens=list(dict(token, pos, feats, prefixes, suffix, suffix_feats?)))
if output.morph_logits is not None:
for sent_idx,parsed in enumerate(morph_parse_logits(inputs, sentences, tokenizer, output.morph_logits)):
merge_token_list(final_output[sent_idx]['tokens'], parsed['tokens'], 'morph')
# NER logits each sentence gets a list(tuple(word, ner))
if output.ner_logits is not None:
for sent_idx,parsed in enumerate(ner_parse_logits(inputs, sentences, tokenizer, output.ner_logits, self.config.id2label)):
if per_token_ner:
merge_token_list(final_output[sent_idx]['tokens'], map(itemgetter(1), parsed), 'ner')
final_output[sent_idx]['ner_entities'] = aggregate_ner_tokens(parsed)
if output_style in ['ud', 'iahlt_ud']:
final_output = convert_output_to_ud(final_output, style='htb' if output_style == 'ud' else 'iahlt')
if is_single_sentence:
final_output = final_output[0]
return final_output
def aggregate_ner_tokens(predictions):
entities = []
prev = None
for word,pred in predictions:
# O does nothing
if pred == 'O': prev = None
# B- || I-entity != prev (different entity or none)
elif pred.startswith('B-') or pred[2:] != prev:
prev = pred[2:]
entities.append(([word], prev))
else: entities[-1][0].append(word)
return [dict(phrase=' '.join(words), label=label) for words,label in entities]
def merge_token_list(src, update, key):
for token_src, token_update in zip(src, update):
token_src[key] = token_update
def combine_token_wordpieces(input_ids: torch.Tensor, tokenizer: BertTokenizerFast):
ret = []
for token in tokenizer.convert_ids_to_tokens(input_ids):
if token in [tokenizer.cls_token, tokenizer.sep_token, tokenizer.pad_token]: continue
if token.startswith('##'):
ret[-1] += token[2:]
else: ret.append(token)
return ret
def ner_parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.Tensor, id2label: Dict[int, str]):
input_ids = inputs['input_ids']
predictions = torch.argmax(logits, dim=-1)
batch_ret = []
for batch_idx in range(len(sentences)):
ret = []
batch_ret.append(ret)
for tok_idx in range(input_ids.shape[1]):
token_id = input_ids[batch_idx, tok_idx]
# ignore cls, sep, pad
if token_id in [tokenizer.cls_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id]: continue
token = tokenizer._convert_id_to_token(token_id)
# wordpieces should just be appended to the previous word
if token.startswith('##'):
ret[-1] = (ret[-1][0] + token[2:], ret[-1][1])
continue
ret.append((token, id2label[predictions[batch_idx, tok_idx].item()]))
return batch_ret
def lex_parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.Tensor):
input_ids = inputs['input_ids']
predictions = torch.argmax(logits, dim=-1)
batch_ret = []
for batch_idx in range(len(sentences)):
ret = []
batch_ret.append(ret)
for tok_idx in range(input_ids.shape[1]):
token_id = input_ids[batch_idx, tok_idx]
# ignore cls, sep, pad
if token_id in [tokenizer.cls_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id]: continue
token = tokenizer._convert_id_to_token(token_id)
# wordpieces should just be appended to the previous word
if token.startswith('##'):
ret[-1] = (ret[-1][0] + token[2:], ret[-1][1])
continue
ret.append((token, tokenizer._convert_id_to_token(predictions[batch_idx, tok_idx])))
return batch_ret
ud_prefixes_to_pos = {
'ืฉ': ['SCONJ'],
'ืืฉ': ['SCONJ'],
'ืืฉ': ['SCONJ'],
'ืืืฉ': ['SCONJ'],
'ืืฉ': ['SCONJ'],
'ืืฉ': ['SCONJ'],
'ื': ['CCONJ'],
'ื': ['ADP'],
'ื': ['DET', 'SCONJ'],
'ื': ['ADP', 'SCONJ'],
'ื': ['ADP'],
'ื': ['ADP', 'ADV'],
}
ud_suffix_to_htb_str = {
'Gender=Masc|Number=Sing|Person=3': '_ืืื',
'Gender=Masc|Number=Plur|Person=3': '_ืื',
'Gender=Fem|Number=Sing|Person=3': '_ืืื',
'Gender=Fem|Number=Plur|Person=3': '_ืื',
'Gender=Fem,Masc|Number=Plur|Person=1': '_ืื ืื ื',
'Gender=Fem,Masc|Number=Sing|Person=1': '_ืื ื',
'Gender=Masc|Number=Plur|Person=2': '_ืืชื',
'Gender=Masc|Number=Sing|Person=3': '_ืืื',
'Gender=Masc|Number=Sing|Person=2': '_ืืชื',
'Gender=Fem|Number=Sing|Person=2': '_ืืช',
'Gender=Masc|Number=Plur|Person=3': '_ืื'
}
def convert_output_to_ud(output_sentences, style: Literal['htb', 'iahlt']):
if style not in ['htb', 'iahlt']:
raise ValueError('style must be htb/iahlt')
final_output = []
for sent_idx, sentence in enumerate(output_sentences):
# next, go through each word and insert it in the UD format. Store in a temp format for the post process
intermediate_output = []
ranges = []
# store a mapping between each word index and the actual line it appears in
idx_to_key = {-1: 0}
for word_idx,word in enumerate(sentence['tokens']):
# handle blank lexemes
if word['lex'] == '[BLANK]':
word['lex'] = word['seg'][-1]
start = len(intermediate_output)
# Add in all the prefixes
if len(word['seg']) > 1:
for pre in get_prefixes_from_str(word['seg'][0], greedy=True):
# pos - just take the first valid pos that appears in the predicted prefixes list.
pos = next((pos for pos in ud_prefixes_to_pos[pre] if pos in word['morph']['prefixes']), ud_prefixes_to_pos[pre][0])
dep, func = ud_get_prefix_dep(pre, word, word_idx)
intermediate_output.append(dict(word=pre, lex=pre, pos=pos, dep=dep, func=func, feats='_'))
# if there was an implicit heh, add it in dependent on the method
if not 'ื' in pre and intermediate_output[-1]['pos'] == 'ADP' and 'DET' in word['morph']['prefixes']:
if style == 'htb':
intermediate_output.append(dict(word='ื_', lex='ื', pos='DET', dep=word_idx, func='det', feats='_'))
elif style == 'iahlt':
intermediate_output[-1]['feats'] = 'Definite=Def|PronType=Art'
idx_to_key[word_idx] = len(intermediate_output) + 1
# add the main word in!
intermediate_output.append(dict(
word=word['seg'][-1], lex=word['lex'], pos=word['morph']['pos'],
dep=word['syntax']['dep_head_idx'], func=word['syntax']['dep_func'],
feats='|'.join(f'{k}={v}' for k,v in word['morph']['feats'].items())))
# if we have suffixes, this changes things
if word['morph']['suffix']:
# first determine the dependency info:
# For adp, num, det - they main word points to here, and the suffix points to the dependency
entry_to_assign_suf_dep = None
if word['morph']['pos'] in ['ADP', 'NUM', 'DET']:
entry_to_assign_suf_dep = intermediate_output[-1]
intermediate_output[-1]['func'] = 'case'
dep = word['syntax']['dep_head_idx']
func = word['syntax']['dep_func']
else:
# if pos is verb -> obj, num -> dep, default to -> nmod:poss
dep = word_idx
func = {'VERB': 'obj', 'NUM': 'dep'}.get(word['morph']['pos'], 'nmod:poss')
s_word, s_lex = word['seg'][-1], word['lex']
# update the word of the string and extract the string of the suffix!
# for IAHLT:
if style == 'iahlt':
# we need to shorten the main word and extract the suffix
# if it is longer than the lexeme - just take off the lexeme.
if len(s_word) > len(s_lex):
idx = len(s_lex)
# Otherwise, try to find the last letter of the lexeme, and fail that just take the last letter
else:
# take either len-1, or the last occurence (which can be -1 === len-1)
idx = min([len(s_word) - 1, s_word.rfind(s_lex[-1])])
# extract the suffix and update the main word
suf = s_word[idx:]
intermediate_output[-1]['word'] = s_word[:idx]
# for htb:
elif style == 'htb':
# main word becomes the lexeme, the suffix is based on the features
intermediate_output[-1]['word'] = (s_lex if s_lex != s_word else s_word[:-1]) + '_'
suf_feats = word['morph']['suffix_feats']
suf = ud_suffix_to_htb_str.get(f"Gender={suf_feats.get('Gender', 'Fem,Masc')}|Number={suf_feats.get('Number', 'Sing')}|Person={suf_feats.get('Person', '3')}", "_ืืื")
# for HTB, if the function is poss, then add a shel pointing to the next word
if func == 'nmod:poss':
intermediate_output.append(dict(word='_ืฉื_', lex='ืฉื', pos='ADP', dep=len(intermediate_output) + 2, func='case', feats='_', absolute_dep=True))
# add the main suffix in
intermediate_output.append(dict(word=suf, lex='ืืื', pos='PRON', dep=dep, func=func, feats='|'.join(f'{k}={v}' for k,v in word['morph']['suffix_feats'].items())))
if entry_to_assign_suf_dep:
entry_to_assign_suf_dep['dep'] = len(intermediate_output)
entry_to_assign_suf_dep['absolute_dep'] = True
end = len(intermediate_output)
ranges.append((start, end, word['token']))
# now that we have the intermediate output, combine it to the final output
cur_output = []
final_output.append(cur_output)
# first, add the headers
cur_output.append(f'# sent_id = {sent_idx + 1}')
cur_output.append(f'# text = {sentence["text"]}')
# add in all the actual entries
for start,end,token in ranges:
if end - start > 1:
cur_output.append(f'{start + 1}-{end}\t{token}\t_\t_\t_\t_\t_\t_\t_\t_')
for idx,output in enumerate(intermediate_output[start:end], start + 1):
# compute the actual dependency location
dep = output['dep'] if output.get('absolute_dep', False) else idx_to_key[output['dep']]
func = normalize_dep_rel(output['func'], style)
# and add the full ud string in
cur_output.append('\t'.join([
str(idx),
output['word'],
output['lex'],
output['pos'],
output['pos'],
output['feats'],
str(dep),
func,
'_', '_'
]))
return final_output
def normalize_dep_rel(dep, style: Literal['htb', 'iahlt']):
if style == 'iahlt':
if dep == 'compound:smixut': return 'compound'
if dep == 'nsubj:cop': return 'nsubj'
if dep == 'mark:q': return 'mark'
if dep == 'case:gen' or dep == 'case:acc': return 'case'
return dep
def ud_get_prefix_dep(pre, word, word_idx):
does_follow_main = False
# shin goes to the main word for verbs, otherwise follows the word
if pre.endswith('ืฉ'):
does_follow_main = word['morph']['pos'] != 'VERB'
func = 'mark'
# vuv goes to the main word if the function is in the list, otherwise follows
elif pre == 'ื':
does_follow_main = word['syntax']['dep_func'] not in ["conj", "acl:recl", "parataxis", "root", "acl", "amod", "list", "appos", "dep", "flatccomp"]
func = 'cc'
else:
# for adj, noun, propn, pron, verb - prefixes go to the main word
if word['morph']['pos'] in ["ADJ", "NOUN", "PROPN", "PRON", "VERB"]:
does_follow_main = False
# otherwise - prefix follows the word if the function is in the list
else: does_follow_main = word['syntax']['dep_func'] in ["compound:affix", "det", "aux", "nummod", "advmod", "dep", "cop", "mark", "fixed"]
func = 'case'
if pre == 'ื':
func = 'det' if 'DET' in word['morph']['prefixes'] else 'mark'
return (word['syntax']['dep_head_idx'] if does_follow_main else word_idx), func
|