Upload 4 files
Browse files- BertForJointParsing.py +310 -0
- BertForMorphTagging.py +212 -0
- BertForPrefixMarking.py +248 -0
- BertForSyntaxParsing.py +285 -0
BertForJointParsing.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import math
|
3 |
+
from operator import itemgetter
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
|
7 |
+
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
|
8 |
+
from transformers.models.bert.modeling_bert import BertOnlyMLMHead
|
9 |
+
from transformers.utils import ModelOutput
|
10 |
+
try:
|
11 |
+
from .BertForSyntaxParsing import BertSyntaxParsingHead, SyntaxLabels, SyntaxLogitsOutput, parse_logits as syntax_parse_logits
|
12 |
+
from .BertForPrefixMarking import BertPrefixMarkingHead, parse_logits as prefix_parse_logits, encode_sentences_for_bert_for_prefix_marking
|
13 |
+
from .BertForMorphTagging import BertMorphTaggingHead, MorphLogitsOutput, MorphLabels, parse_logits as morph_parse_logits
|
14 |
+
except ImportError:
|
15 |
+
from BertForSyntaxParsing import BertSyntaxParsingHead, SyntaxLabels, SyntaxLogitsOutput, parse_logits as syntax_parse_logits
|
16 |
+
from BertForPrefixMarking import BertPrefixMarkingHead, parse_logits as prefix_parse_logits, encode_sentences_for_bert_for_prefix_marking
|
17 |
+
from BertForMorphTagging import BertMorphTaggingHead, MorphLogitsOutput, MorphLabels, parse_logits as morph_parse_logits
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class JointParsingOutput(ModelOutput):
|
23 |
+
loss: Optional[torch.FloatTensor] = None
|
24 |
+
# logits will contain the optional predictions for the given labels
|
25 |
+
logits: Optional[Union[SyntaxLogitsOutput, None]] = None
|
26 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
27 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
28 |
+
# if no labels are given, we will always include the syntax logits separately
|
29 |
+
syntax_logits: Optional[SyntaxLogitsOutput] = None
|
30 |
+
ner_logits: Optional[torch.FloatTensor] = None
|
31 |
+
prefix_logits: Optional[torch.FloatTensor] = None
|
32 |
+
lex_logits: Optional[torch.FloatTensor] = None
|
33 |
+
morph_logits: Optional[MorphLogitsOutput] = None
|
34 |
+
|
35 |
+
# wrapper class to wrap a torch.nn.Module so that you can store a module in multiple linked
|
36 |
+
# properties without registering the parameter multiple times
|
37 |
+
class ModuleRef:
|
38 |
+
def __init__(self, module: torch.nn.Module):
|
39 |
+
self.module = module
|
40 |
+
|
41 |
+
def forward(self, *args, **kwargs):
|
42 |
+
return self.module.forward(*args, **kwargs)
|
43 |
+
|
44 |
+
def __call__(self, *args, **kwargs):
|
45 |
+
return self.module(*args, **kwargs)
|
46 |
+
|
47 |
+
class BertForJointParsing(BertPreTrainedModel):
|
48 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
49 |
+
|
50 |
+
def __init__(self, config, do_syntax=None, do_ner=None, do_prefix=None, do_lex=None, do_morph=None, syntax_head_size=64):
|
51 |
+
super().__init__(config)
|
52 |
+
|
53 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
54 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
55 |
+
# create all the heads as None, and then populate them as defined
|
56 |
+
self.syntax, self.ner, self.prefix, self.lex, self.morph = (None,)*5
|
57 |
+
|
58 |
+
if do_syntax is not None:
|
59 |
+
config.do_syntax = do_syntax
|
60 |
+
config.syntax_head_size = syntax_head_size
|
61 |
+
if do_ner is not None: config.do_ner = do_ner
|
62 |
+
if do_prefix is not None: config.do_prefix = do_prefix
|
63 |
+
if do_lex is not None: config.do_lex = do_lex
|
64 |
+
if do_morph is not None: config.do_morph = do_morph
|
65 |
+
|
66 |
+
# add all the individual heads
|
67 |
+
if config.do_syntax:
|
68 |
+
self.syntax = BertSyntaxParsingHead(config)
|
69 |
+
if config.do_ner:
|
70 |
+
self.num_labels = config.num_labels
|
71 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels) # name it same as in BertForTokenClassification
|
72 |
+
self.ner = ModuleRef(self.classifier)
|
73 |
+
if config.do_prefix:
|
74 |
+
self.prefix = BertPrefixMarkingHead(config)
|
75 |
+
if config.do_lex:
|
76 |
+
self.cls = BertOnlyMLMHead(config) # name it the same as in BertForMaskedLM
|
77 |
+
self.lex = ModuleRef(self.cls)
|
78 |
+
if config.do_morph:
|
79 |
+
self.morph = BertMorphTaggingHead(config)
|
80 |
+
|
81 |
+
# Initialize weights and apply final processing
|
82 |
+
self.post_init()
|
83 |
+
|
84 |
+
def get_output_embeddings(self):
|
85 |
+
return self.cls.predictions.decoder if self.lex is not None else None
|
86 |
+
|
87 |
+
def set_output_embeddings(self, new_embeddings):
|
88 |
+
if self.lex is not None:
|
89 |
+
self.cls.predictions.decoder = new_embeddings
|
90 |
+
|
91 |
+
def forward(
|
92 |
+
self,
|
93 |
+
input_ids: Optional[torch.Tensor] = None,
|
94 |
+
attention_mask: Optional[torch.Tensor] = None,
|
95 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
96 |
+
position_ids: Optional[torch.Tensor] = None,
|
97 |
+
prefix_class_id_options: Optional[torch.Tensor] = None,
|
98 |
+
labels: Optional[Union[SyntaxLabels, MorphLabels, torch.Tensor]] = None,
|
99 |
+
labels_type: Optional[Literal['syntax', 'ner', 'prefix', 'lex', 'morph']] = None,
|
100 |
+
head_mask: Optional[torch.Tensor] = None,
|
101 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
102 |
+
output_attentions: Optional[bool] = None,
|
103 |
+
output_hidden_states: Optional[bool] = None,
|
104 |
+
return_dict: Optional[bool] = None,
|
105 |
+
compute_syntax_mst: Optional[bool] = None
|
106 |
+
):
|
107 |
+
if return_dict is False:
|
108 |
+
warnings.warn("Specified `return_dict=False` but the flag is ignored and treated as always True in this model.")
|
109 |
+
|
110 |
+
if labels is not None and labels_type is None:
|
111 |
+
raise ValueError("Cannot specify labels without labels_type")
|
112 |
+
|
113 |
+
if labels_type == 'seg' and prefix_class_id_options is None:
|
114 |
+
raise ValueError('Cannot calculate prefix logits without prefix_class_id_options')
|
115 |
+
|
116 |
+
if compute_syntax_mst is not None and self.syntax is None:
|
117 |
+
raise ValueError("Cannot compute syntax MST when the syntax head isn't loaded")
|
118 |
+
|
119 |
+
|
120 |
+
bert_outputs = self.bert(
|
121 |
+
input_ids,
|
122 |
+
attention_mask=attention_mask,
|
123 |
+
token_type_ids=token_type_ids,
|
124 |
+
position_ids=position_ids,
|
125 |
+
head_mask=head_mask,
|
126 |
+
inputs_embeds=inputs_embeds,
|
127 |
+
output_attentions=output_attentions,
|
128 |
+
output_hidden_states=output_hidden_states,
|
129 |
+
return_dict=True,
|
130 |
+
)
|
131 |
+
|
132 |
+
# calculate the extended attention mask for any child that might need it
|
133 |
+
extended_attention_mask = None
|
134 |
+
if attention_mask is not None:
|
135 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size())
|
136 |
+
|
137 |
+
# extract the hidden states, and apply the dropout
|
138 |
+
hidden_states = self.dropout(bert_outputs[0])
|
139 |
+
|
140 |
+
logits = None
|
141 |
+
syntax_logits = None
|
142 |
+
ner_logits = None
|
143 |
+
prefix_logits = None
|
144 |
+
lex_logits = None
|
145 |
+
morph_logits = None
|
146 |
+
|
147 |
+
# Calculate the syntax
|
148 |
+
if self.syntax is not None and (labels is None or labels_type == 'syntax'):
|
149 |
+
# apply the syntax head
|
150 |
+
loss, syntax_logits = self.syntax(hidden_states, extended_attention_mask, labels, compute_syntax_mst)
|
151 |
+
logits = syntax_logits
|
152 |
+
|
153 |
+
# Calculate the NER
|
154 |
+
if self.ner is not None and (labels is None or labels_type == 'ner'):
|
155 |
+
ner_logits = self.ner(hidden_states)
|
156 |
+
logits = ner_logits
|
157 |
+
if labels is not None:
|
158 |
+
loss_fct = nn.CrossEntropyLoss()
|
159 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
160 |
+
|
161 |
+
# Calculate the segmentation
|
162 |
+
if self.prefix is not None and (labels is None or labels_type == 'prefix'):
|
163 |
+
loss, prefix_logits = self.prefix(hidden_states, prefix_class_id_options, labels)
|
164 |
+
logits = prefix_logits
|
165 |
+
|
166 |
+
# Calculate the lexeme
|
167 |
+
if self.lex is not None and (labels is None or labels_type == 'lex'):
|
168 |
+
lex_logits = self.lex(hidden_states)
|
169 |
+
logits = lex_logits
|
170 |
+
if labels is not None:
|
171 |
+
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
|
172 |
+
loss = loss_fct(lex_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
173 |
+
|
174 |
+
if self.morph is not None and (labels is None or labels_type == 'morph'):
|
175 |
+
loss, morph_logits = self.morph(hidden_states, labels)
|
176 |
+
logits = morph_logits
|
177 |
+
|
178 |
+
# no labels => logits = None
|
179 |
+
if labels is None: logits = None
|
180 |
+
|
181 |
+
return JointParsingOutput(
|
182 |
+
loss,
|
183 |
+
logits,
|
184 |
+
hidden_states=bert_outputs.hidden_states,
|
185 |
+
attentions=bert_outputs.attentions,
|
186 |
+
# all the predicted logits section
|
187 |
+
syntax_logits=syntax_logits,
|
188 |
+
ner_logits=ner_logits,
|
189 |
+
prefix_logits=prefix_logits,
|
190 |
+
lex_logits=lex_logits,
|
191 |
+
morph_logits=morph_logits
|
192 |
+
)
|
193 |
+
|
194 |
+
def predict(self, sentences: Union[str, List[str]], tokenizer: BertTokenizerFast, padding='longest', truncation=True, compute_syntax_mst=True, per_token_ner=False):
|
195 |
+
is_single_sentence = isinstance(sentences, str)
|
196 |
+
if is_single_sentence:
|
197 |
+
sentences = [sentences]
|
198 |
+
|
199 |
+
# predict the logits for the sentence
|
200 |
+
if self.prefix is not None:
|
201 |
+
inputs = encode_sentences_for_bert_for_prefix_marking(tokenizer, sentences, padding)
|
202 |
+
else:
|
203 |
+
inputs = tokenizer(sentences, padding=padding, truncation=truncation, return_tensors='pt')
|
204 |
+
|
205 |
+
# Copy the tensors to the right device, and parse!
|
206 |
+
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
207 |
+
output = self.forward(**inputs, return_dict=True, compute_syntax_mst=compute_syntax_mst)
|
208 |
+
|
209 |
+
final_output = [dict(text=sentence, tokens=[dict(token=t) for t in combine_token_wordpieces(ids, tokenizer)]) for sentence, ids in zip(sentences, inputs['input_ids'])]
|
210 |
+
# Syntax logits: each sentence gets a dict(tree: List[dict(word,dep_head,dep_head_idx,dep_func)], root_idx: int)
|
211 |
+
if output.syntax_logits is not None:
|
212 |
+
for sent_idx,parsed in enumerate(syntax_parse_logits(inputs, sentences, tokenizer, output.syntax_logits)):
|
213 |
+
merge_token_list(final_output[sent_idx]['tokens'], parsed['tree'], 'syntax')
|
214 |
+
final_output[sent_idx]['root_idx'] = parsed['root_idx']
|
215 |
+
|
216 |
+
# Prefix logits: each sentence gets a list([prefix_segment, word_without_prefix]) - **WITH CLS & SEP**
|
217 |
+
if output.prefix_logits is not None:
|
218 |
+
for sent_idx,parsed in enumerate(prefix_parse_logits(inputs, sentences, tokenizer, output.prefix_logits)):
|
219 |
+
merge_token_list(final_output[sent_idx]['tokens'], map(tuple, parsed[1:-1]), 'seg')
|
220 |
+
|
221 |
+
# Lex logits each sentence gets a list(tuple(word, lexeme))
|
222 |
+
if output.lex_logits is not None:
|
223 |
+
for sent_idx, parsed in enumerate(lex_parse_logits(inputs, sentences, tokenizer, output.lex_logits)):
|
224 |
+
merge_token_list(final_output[sent_idx]['tokens'], map(itemgetter(1), parsed), 'lex')
|
225 |
+
|
226 |
+
# morph logits each sentences get a dict(text=str, tokens=list(dict(token, pos, feats, prefixes, suffix, suffix_feats?)))
|
227 |
+
if output.morph_logits is not None:
|
228 |
+
for sent_idx,parsed in enumerate(morph_parse_logits(inputs, sentences, tokenizer, output.morph_logits)):
|
229 |
+
merge_token_list(final_output[sent_idx]['tokens'], parsed['tokens'], 'morph')
|
230 |
+
|
231 |
+
# NER logits each sentence gets a list(tuple(word, ner))
|
232 |
+
if output.ner_logits is not None:
|
233 |
+
for sent_idx,parsed in enumerate(ner_parse_logits(inputs, sentences, tokenizer, output.ner_logits, self.config.id2label)):
|
234 |
+
if per_token_ner:
|
235 |
+
merge_token_list(final_output[sent_idx]['tokens'], map(itemgetter(1), parsed), 'ner')
|
236 |
+
final_output[sent_idx]['ner_entities'] = aggregate_ner_tokens(parsed)
|
237 |
+
|
238 |
+
if is_single_sentence:
|
239 |
+
final_output = final_output[0]
|
240 |
+
return final_output
|
241 |
+
|
242 |
+
def aggregate_ner_tokens(predictions):
|
243 |
+
entities = []
|
244 |
+
prev = None
|
245 |
+
for word,pred in predictions:
|
246 |
+
# O does nothing
|
247 |
+
if pred == 'O': prev = None
|
248 |
+
# B- || I-entity != prev (different entity or none)
|
249 |
+
elif pred.startswith('B-') or pred[2:] != prev:
|
250 |
+
prev = pred[2:]
|
251 |
+
entities.append(([word], prev))
|
252 |
+
else: entities[-1][0].append(word)
|
253 |
+
|
254 |
+
return [dict(phrase=' '.join(words), label=label) for words,label in entities]
|
255 |
+
|
256 |
+
|
257 |
+
def merge_token_list(src, update, key):
|
258 |
+
for token_src, token_update in zip(src, update):
|
259 |
+
token_src[key] = token_update
|
260 |
+
|
261 |
+
def combine_token_wordpieces(input_ids: torch.Tensor, tokenizer: BertTokenizerFast):
|
262 |
+
ret = []
|
263 |
+
for token in tokenizer.convert_ids_to_tokens(input_ids):
|
264 |
+
if token in [tokenizer.cls_token, tokenizer.sep_token, tokenizer.pad_token]: continue
|
265 |
+
if token.startswith('##'):
|
266 |
+
ret[-1] += token[2:]
|
267 |
+
else: ret.append(token)
|
268 |
+
return ret
|
269 |
+
|
270 |
+
def ner_parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.Tensor, id2label: Dict[int, str]):
|
271 |
+
input_ids = inputs['input_ids']
|
272 |
+
|
273 |
+
predictions = torch.argmax(logits, dim=-1)
|
274 |
+
batch_ret = []
|
275 |
+
for batch_idx in range(len(sentences)):
|
276 |
+
ret = []
|
277 |
+
batch_ret.append(ret)
|
278 |
+
for tok_idx in range(input_ids.shape[1]):
|
279 |
+
token_id = input_ids[batch_idx, tok_idx]
|
280 |
+
# ignore cls, sep, pad
|
281 |
+
if token_id in [tokenizer.cls_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id]: continue
|
282 |
+
|
283 |
+
token = tokenizer._convert_id_to_token(token_id)
|
284 |
+
# wordpieces should just be appended to the previous word
|
285 |
+
if token.startswith('##'):
|
286 |
+
ret[-1] = (ret[-1][0] + token[2:], ret[-1][1])
|
287 |
+
continue
|
288 |
+
ret.append((token, id2label[predictions[batch_idx, tok_idx].item()]))
|
289 |
+
return batch_ret
|
290 |
+
|
291 |
+
def lex_parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.Tensor):
|
292 |
+
input_ids = inputs['input_ids']
|
293 |
+
|
294 |
+
predictions = torch.argmax(logits, dim=-1)
|
295 |
+
batch_ret = []
|
296 |
+
for batch_idx in range(len(sentences)):
|
297 |
+
ret = []
|
298 |
+
batch_ret.append(ret)
|
299 |
+
for tok_idx in range(input_ids.shape[1]):
|
300 |
+
token_id = input_ids[batch_idx, tok_idx]
|
301 |
+
# ignore cls, sep, pad
|
302 |
+
if token_id in [tokenizer.cls_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id]: continue
|
303 |
+
|
304 |
+
token = tokenizer._convert_id_to_token(token_id)
|
305 |
+
# wordpieces should just be appended to the previous word
|
306 |
+
if token.startswith('##'):
|
307 |
+
ret[-1] = (ret[-1][0] + token[2:], ret[-1][1])
|
308 |
+
continue
|
309 |
+
ret.append((token, tokenizer._convert_id_to_token(predictions[batch_idx, tok_idx])))
|
310 |
+
return batch_ret
|
BertForMorphTagging.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from operator import itemgetter
|
3 |
+
from transformers.utils import ModelOutput
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from typing import Dict, List, Tuple, Optional
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
|
9 |
+
|
10 |
+
ALL_POS = ['DET', 'NOUN', 'VERB', 'CCONJ', 'ADP', 'PRON', 'PUNCT', 'ADJ', 'ADV', 'SCONJ', 'NUM', 'PROPN', 'AUX', 'X', 'INTJ', 'SYM']
|
11 |
+
ALL_PREFIX_POS = ['SCONJ', 'DET', 'ADV', 'CCONJ', 'ADP', 'NUM']
|
12 |
+
ALL_SUFFIX_POS = ['none', 'ADP_PRON', 'PRON']
|
13 |
+
ALL_FEATURES = [
|
14 |
+
('Gender', ['none', 'Masc', 'Fem', 'Fem,Masc']),
|
15 |
+
('Number', ['none', 'Sing', 'Plur', 'Plur,Sing', 'Dual', 'Dual,Plur']),
|
16 |
+
('Person', ['none', '1', '2', '3', '1,2,3']),
|
17 |
+
('Tense', ['none', 'Past', 'Fut', 'Pres', 'Imp'])
|
18 |
+
]
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class MorphLogitsOutput(ModelOutput):
|
22 |
+
prefix_logits: torch.FloatTensor = None
|
23 |
+
pos_logits: torch.FloatTensor = None
|
24 |
+
features_logits: List[torch.FloatTensor] = None
|
25 |
+
suffix_logits: torch.FloatTensor = None
|
26 |
+
suffix_features_logits: List[torch.FloatTensor] = None
|
27 |
+
|
28 |
+
def detach(self):
|
29 |
+
return MorphLogitsOutput(self.prefix_logits.detach(), self.pos_logits.detach(), [logits.deatch() for logits in self.features_logits], self.suffix_logits.detach(), [logits.deatch() for logits in self.suffix_features_logits])
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class MorphTaggingOutput(ModelOutput):
|
34 |
+
loss: Optional[torch.FloatTensor] = None
|
35 |
+
logits: Optional[MorphLogitsOutput] = None
|
36 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
37 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class MorphLabels(ModelOutput):
|
41 |
+
prefix_labels: Optional[torch.FloatTensor] = None
|
42 |
+
pos_labels: Optional[torch.FloatTensor] = None
|
43 |
+
features_labels: Optional[List[torch.FloatTensor]] = None
|
44 |
+
suffix_labels: Optional[torch.FloatTensor] = None
|
45 |
+
suffix_features_labels: Optional[List[torch.FloatTensor]] = None
|
46 |
+
|
47 |
+
def detach(self):
|
48 |
+
return MorphLabels(self.prefix_labels.detach(), self.pos_labels.detach(), [labels.detach() for labels in self.features_labels], self.suffix_labels.detach(), [labels.detach() for labels in self.suffix_features_labels])
|
49 |
+
|
50 |
+
def to(self, device):
|
51 |
+
return MorphLabels(self.prefix_labels.to(device), self.pos_labels.to(device), [feat.to(device) for feat in self.features_labels], self.suffix_labels.to(device), [feat.to(device) for feat in self.suffix_features_labels])
|
52 |
+
|
53 |
+
class BertMorphTaggingHead(nn.Module):
|
54 |
+
def __init__(self, config):
|
55 |
+
super().__init__()
|
56 |
+
self.config = config
|
57 |
+
|
58 |
+
self.num_prefix_classes = len(ALL_PREFIX_POS)
|
59 |
+
self.num_pos_classes = len(ALL_POS)
|
60 |
+
self.num_suffix_classes = len(ALL_SUFFIX_POS)
|
61 |
+
self.num_features_classes = list(map(len, map(itemgetter(1), ALL_FEATURES)))
|
62 |
+
# we need a classifier for prefix cls and POS cls
|
63 |
+
# the prefix will use BCEWithLogits for multiple labels cls
|
64 |
+
self.prefix_cls = nn.Linear(config.hidden_size, self.num_prefix_classes)
|
65 |
+
# and pos + feats will use good old cross entropy for single label
|
66 |
+
self.pos_cls = nn.Linear(config.hidden_size, self.num_pos_classes)
|
67 |
+
self.features_cls = nn.ModuleList([nn.Linear(config.hidden_size, len(features)) for _, features in ALL_FEATURES])
|
68 |
+
# and suffix + feats will also be cross entropy
|
69 |
+
self.suffix_cls = nn.Linear(config.hidden_size, self.num_suffix_classes)
|
70 |
+
self.suffix_features_cls = nn.ModuleList([nn.Linear(config.hidden_size, len(features)) for _, features in ALL_FEATURES])
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
hidden_states: torch.Tensor,
|
75 |
+
labels: Optional[MorphLabels] = None):
|
76 |
+
# run each of the classifiers on the transformed output
|
77 |
+
prefix_logits = self.prefix_cls(hidden_states)
|
78 |
+
pos_logits = self.pos_cls(hidden_states)
|
79 |
+
suffix_logits = self.suffix_cls(hidden_states)
|
80 |
+
features_logits = [cls(hidden_states) for cls in self.features_cls]
|
81 |
+
suffix_features_logits = [cls(hidden_states) for cls in self.suffix_features_cls]
|
82 |
+
|
83 |
+
loss = None
|
84 |
+
if labels is not None:
|
85 |
+
# step 1: prefix labels loss
|
86 |
+
loss_fct = nn.BCEWithLogitsLoss(weight=(labels.prefix_labels != -100).float())
|
87 |
+
loss = loss_fct(prefix_logits, labels.prefix_labels)
|
88 |
+
# step 2: pos labels loss
|
89 |
+
loss_fct = nn.CrossEntropyLoss()
|
90 |
+
loss += loss_fct(pos_logits.view(-1, self.num_pos_classes), labels.pos_labels.view(-1))
|
91 |
+
# step 2b: features
|
92 |
+
for feat_logits,feat_labels,num_features in zip(features_logits, labels.features_labels, self.num_features_classes):
|
93 |
+
loss += loss_fct(feat_logits.view(-1, num_features), feat_labels.view(-1))
|
94 |
+
# step 3: suffix logits loss
|
95 |
+
loss += loss_fct(suffix_logits.view(-1, self.num_suffix_classes), labels.suffix_labels.view(-1))
|
96 |
+
# step 3b: suffix features
|
97 |
+
for feat_logits,feat_labels,num_features in zip(suffix_features_logits, labels.suffix_features_labels, self.num_features_classes):
|
98 |
+
loss += loss_fct(feat_logits.view(-1, num_features), feat_labels.view(-1))
|
99 |
+
|
100 |
+
return loss, MorphLogitsOutput(prefix_logits, pos_logits, features_logits, suffix_logits, suffix_features_logits)
|
101 |
+
|
102 |
+
class BertForMorphTagging(BertPreTrainedModel):
|
103 |
+
|
104 |
+
def __init__(self, config):
|
105 |
+
super().__init__(config)
|
106 |
+
|
107 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
108 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
109 |
+
self.morph = BertMorphTaggingHead(config)
|
110 |
+
|
111 |
+
# Initialize weights and apply final processing
|
112 |
+
self.post_init()
|
113 |
+
|
114 |
+
def forward(
|
115 |
+
self,
|
116 |
+
input_ids: Optional[torch.Tensor] = None,
|
117 |
+
attention_mask: Optional[torch.Tensor] = None,
|
118 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
119 |
+
position_ids: Optional[torch.Tensor] = None,
|
120 |
+
labels: Optional[MorphLabels] = None,
|
121 |
+
head_mask: Optional[torch.Tensor] = None,
|
122 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
123 |
+
output_attentions: Optional[bool] = None,
|
124 |
+
output_hidden_states: Optional[bool] = None,
|
125 |
+
return_dict: Optional[bool] = None,
|
126 |
+
):
|
127 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
128 |
+
|
129 |
+
bert_outputs = self.bert(
|
130 |
+
input_ids,
|
131 |
+
attention_mask=attention_mask,
|
132 |
+
token_type_ids=token_type_ids,
|
133 |
+
position_ids=position_ids,
|
134 |
+
head_mask=head_mask,
|
135 |
+
inputs_embeds=inputs_embeds,
|
136 |
+
output_attentions=output_attentions,
|
137 |
+
output_hidden_states=output_hidden_states,
|
138 |
+
return_dict=return_dict,
|
139 |
+
)
|
140 |
+
|
141 |
+
hidden_states = bert_outputs[0]
|
142 |
+
hidden_states = self.dropout(hidden_states)
|
143 |
+
|
144 |
+
loss, logits = self.morph(hidden_states, labels)
|
145 |
+
|
146 |
+
if not return_dict:
|
147 |
+
return (loss,logits) + bert_outputs[2:]
|
148 |
+
|
149 |
+
return MorphTaggingOutput(
|
150 |
+
loss=loss,
|
151 |
+
logits=logits,
|
152 |
+
hidden_states=bert_outputs.hidden_states,
|
153 |
+
attentions=bert_outputs.attentions,
|
154 |
+
)
|
155 |
+
|
156 |
+
def predict(self, sentences: List[str], tokenizer: BertTokenizerFast, padding='longest'):
|
157 |
+
# tokenize the inputs and convert them to relevant device
|
158 |
+
inputs = tokenizer(sentences, padding=padding, truncation=True, return_tensors='pt')
|
159 |
+
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
160 |
+
# calculate the logits
|
161 |
+
logits = self.forward(**inputs, return_dict=True).logits
|
162 |
+
return parse_logits(inputs, sentences, tokenizer, logits)
|
163 |
+
|
164 |
+
def parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: MorphLogitsOutput):
|
165 |
+
prefix_logits, pos_logits, feats_logits, suffix_logits, suffix_feats_logits = \
|
166 |
+
logits.prefix_logits, logits.pos_logits, logits.features_logits, logits.suffix_logits, logits.suffix_features_logits
|
167 |
+
|
168 |
+
prefix_predictions = (prefix_logits > 0.5).int() # Threshold at 0.5 for multi-label classification
|
169 |
+
pos_predictions = pos_logits.argmax(axis=-1)
|
170 |
+
suffix_predictions = suffix_logits.argmax(axis=-1)
|
171 |
+
feats_predictions = [logits.argmax(axis=-1) for logits in feats_logits]
|
172 |
+
suffix_feats_predictions = [logits.argmax(axis=-1) for logits in suffix_feats_logits]
|
173 |
+
|
174 |
+
# create the return dictionary
|
175 |
+
# for each sentence, return a dict object with the following files { text, tokens }
|
176 |
+
# Where tokens is a list of dicts, where each dict is:
|
177 |
+
# { pos: str, feats: dict, prefixes: List[str], suffix: str | bool, suffix_feats: dict | None}
|
178 |
+
special_tokens = set([tokenizer.pad_token, tokenizer.cls_token, tokenizer.sep_token])
|
179 |
+
ret = []
|
180 |
+
for sent_idx,sentence in enumerate(sentences):
|
181 |
+
input_id_strs = tokenizer.convert_ids_to_tokens(inputs['input_ids'][sent_idx])
|
182 |
+
# iterate through each token in the sentence, ignoring special tokens
|
183 |
+
tokens = []
|
184 |
+
for token_idx,token_str in enumerate(input_id_strs):
|
185 |
+
if not token_str in special_tokens:
|
186 |
+
if token_str.startswith('##'):
|
187 |
+
tokens[-1]['token'] += token_str[2:]
|
188 |
+
continue
|
189 |
+
tokens.append(dict(
|
190 |
+
token=token_str,
|
191 |
+
pos=ALL_POS[pos_predictions[sent_idx, token_idx]],
|
192 |
+
feats=get_features_dict_from_predictions(feats_predictions, (sent_idx, token_idx)),
|
193 |
+
prefixes=[ALL_PREFIX_POS[idx] for idx,i in enumerate(prefix_predictions[sent_idx, token_idx]) if i > 0],
|
194 |
+
suffix=get_suffix_or_false(ALL_SUFFIX_POS[suffix_predictions[sent_idx, token_idx]]),
|
195 |
+
))
|
196 |
+
if tokens[-1]['suffix']:
|
197 |
+
tokens[-1]['suffix_feats'] = get_features_dict_from_predictions(suffix_feats_predictions, (sent_idx, token_idx))
|
198 |
+
ret.append(dict(text=sentence, tokens=tokens))
|
199 |
+
return ret
|
200 |
+
|
201 |
+
def get_suffix_or_false(suffix):
|
202 |
+
return False if suffix == 'none' else suffix
|
203 |
+
|
204 |
+
def get_features_dict_from_predictions(predictions, idx):
|
205 |
+
ret = {}
|
206 |
+
for (feat_idx, (feat_name, feat_values)) in enumerate(ALL_FEATURES):
|
207 |
+
val = feat_values[predictions[feat_idx][idx]]
|
208 |
+
if val != 'none':
|
209 |
+
ret[feat_name] = val
|
210 |
+
return ret
|
211 |
+
|
212 |
+
|
BertForPrefixMarking.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.utils import ModelOutput
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from typing import Dict, List, Tuple, Optional
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
|
7 |
+
|
8 |
+
# define the classes, and the possible prefixes for each class
|
9 |
+
POSSIBLE_PREFIX_CLASSES = [ ['לכש', 'כש', 'מש', 'בש', 'לש'], ['מ'], ['ש'], ['ה'], ['ו'], ['כ'], ['ל'], ['ב'] ]
|
10 |
+
# map each individual prefix to it's class number
|
11 |
+
PREFIXES_TO_CLASS = {w:i for i,l in enumerate(POSSIBLE_PREFIX_CLASSES) for w in l}
|
12 |
+
# keep a list of all the prefixes, sorted by length, so that we can decompose
|
13 |
+
# a given prefixes and figure out the classes
|
14 |
+
ALL_PREFIX_ITEMS = list(sorted(PREFIXES_TO_CLASS.keys(), key=len, reverse=True))
|
15 |
+
TOTAL_POSSIBLE_PREFIX_CLASSES = len(POSSIBLE_PREFIX_CLASSES)
|
16 |
+
|
17 |
+
def get_prefixes_from_str(s, greedy=False):
|
18 |
+
# keep trimming prefixes from the string
|
19 |
+
while len(s) > 0 and s[0] in PREFIXES_TO_CLASS:
|
20 |
+
# find the longest string to trim
|
21 |
+
next_pre = next((pre for pre in ALL_PREFIX_ITEMS if s.startswith(pre)), None)
|
22 |
+
if next_pre is None:
|
23 |
+
return
|
24 |
+
yield next_pre
|
25 |
+
# if the chosen prefix is more than one letter, there is always an option that the
|
26 |
+
# prefix is actually just the first letter of the prefix - so offer that up as a valid prefix
|
27 |
+
# as well. We will still jump to the length of the longer one, since if the next two/three
|
28 |
+
# letters are a prefix, they have to be the longest one
|
29 |
+
if not greedy and len(next_pre) > 1:
|
30 |
+
yield next_pre[0]
|
31 |
+
s = s[len(next_pre):]
|
32 |
+
|
33 |
+
def get_prefix_classes_from_str(s, greedy=False):
|
34 |
+
for pre in get_prefixes_from_str(s, greedy):
|
35 |
+
yield PREFIXES_TO_CLASS[pre]
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class PrefixesClassifiersOutput(ModelOutput):
|
39 |
+
loss: Optional[torch.FloatTensor] = None
|
40 |
+
logits: Optional[torch.FloatTensor] = None
|
41 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
42 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
43 |
+
|
44 |
+
class BertPrefixMarkingHead(nn.Module):
|
45 |
+
def __init__(self, config) -> None:
|
46 |
+
super().__init__()
|
47 |
+
self.config = config
|
48 |
+
|
49 |
+
# an embedding table containing an embedding for each prefix class + 1 for NONE
|
50 |
+
# we will concatenate either the embedding/NONE for each class - and we want the concatenate
|
51 |
+
# size to be the hidden_size
|
52 |
+
prefix_class_embed = config.hidden_size // TOTAL_POSSIBLE_PREFIX_CLASSES
|
53 |
+
self.prefix_class_embeddings = nn.Embedding(TOTAL_POSSIBLE_PREFIX_CLASSES + 1, prefix_class_embed)
|
54 |
+
|
55 |
+
# one layer for transformation, apply an activation, then another N classifiers for each prefix class
|
56 |
+
self.transform = nn.Linear(config.hidden_size + prefix_class_embed * TOTAL_POSSIBLE_PREFIX_CLASSES, config.hidden_size)
|
57 |
+
self.activation = nn.Tanh()
|
58 |
+
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, 2) for _ in range(TOTAL_POSSIBLE_PREFIX_CLASSES)])
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
hidden_states: torch.Tensor,
|
63 |
+
prefix_class_id_options: torch.Tensor,
|
64 |
+
labels: Optional[torch.Tensor] = None) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
65 |
+
|
66 |
+
# encode the prefix_class_id_options
|
67 |
+
# If input_ids is batch x seq_len
|
68 |
+
# Then sequence_output is batch x seq_len x hidden_dim
|
69 |
+
# So prefix_class_id_options is batch x seq_len x TOTAL_POSSIBLE_PREFIX_CLASSES
|
70 |
+
# Looking up the embeddings should give us batch x seq_len x TOTAL_POSSIBLE_PREFIX_CLASSES x hidden_dim / N
|
71 |
+
possible_class_embed = self.prefix_class_embeddings(prefix_class_id_options)
|
72 |
+
# then flatten the final dimension - now we have batch x seq_len x hidden_dim_2
|
73 |
+
possible_class_embed = possible_class_embed.reshape(possible_class_embed.shape[:-2] + (-1,))
|
74 |
+
|
75 |
+
# concatenate the new class embed into the sequence output before the transform
|
76 |
+
pre_transform_output = torch.cat((hidden_states, possible_class_embed), dim=-1) # batch x seq_len x (hidden_dim + hidden_dim_2)
|
77 |
+
pre_logits_output = self.activation(self.transform(pre_transform_output))# batch x seq_len x hidden_dim
|
78 |
+
|
79 |
+
# run each of the classifiers on the transformed output
|
80 |
+
logits = torch.cat([cls(pre_logits_output).unsqueeze(-2) for cls in self.classifiers], dim=-2)
|
81 |
+
|
82 |
+
loss = None
|
83 |
+
if labels is not None:
|
84 |
+
loss_fct = nn.CrossEntropyLoss()
|
85 |
+
loss = loss_fct(logits.view(-1, 2), labels.view(-1))
|
86 |
+
|
87 |
+
return (loss, logits)
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
class BertForPrefixMarking(BertPreTrainedModel):
|
92 |
+
|
93 |
+
def __init__(self, config):
|
94 |
+
super().__init__(config)
|
95 |
+
|
96 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
97 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
98 |
+
self.prefix = BertPrefixMarkingHead(config)
|
99 |
+
|
100 |
+
# Initialize weights and apply final processing
|
101 |
+
self.post_init()
|
102 |
+
|
103 |
+
def forward(
|
104 |
+
self,
|
105 |
+
input_ids: Optional[torch.Tensor] = None,
|
106 |
+
attention_mask: Optional[torch.Tensor] = None,
|
107 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
108 |
+
prefix_class_id_options: Optional[torch.Tensor] = None,
|
109 |
+
position_ids: Optional[torch.Tensor] = None,
|
110 |
+
labels: Optional[torch.Tensor] = None,
|
111 |
+
head_mask: Optional[torch.Tensor] = None,
|
112 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
113 |
+
output_attentions: Optional[bool] = None,
|
114 |
+
output_hidden_states: Optional[bool] = None,
|
115 |
+
return_dict: Optional[bool] = None,
|
116 |
+
):
|
117 |
+
r"""
|
118 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
119 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
120 |
+
"""
|
121 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
122 |
+
|
123 |
+
bert_outputs = self.bert(
|
124 |
+
input_ids,
|
125 |
+
attention_mask=attention_mask,
|
126 |
+
token_type_ids=token_type_ids,
|
127 |
+
position_ids=position_ids,
|
128 |
+
head_mask=head_mask,
|
129 |
+
inputs_embeds=inputs_embeds,
|
130 |
+
output_attentions=output_attentions,
|
131 |
+
output_hidden_states=output_hidden_states,
|
132 |
+
return_dict=return_dict,
|
133 |
+
)
|
134 |
+
|
135 |
+
hidden_states = bert_outputs[0]
|
136 |
+
hidden_states = self.dropout(hidden_states)
|
137 |
+
|
138 |
+
loss, logits = self.prefix.forward(hidden_states, prefix_class_id_options, labels)
|
139 |
+
if not return_dict:
|
140 |
+
return (loss,logits,) + bert_outputs[2:]
|
141 |
+
|
142 |
+
return PrefixesClassifiersOutput(
|
143 |
+
loss=loss,
|
144 |
+
logits=logits,
|
145 |
+
hidden_states=bert_outputs.hidden_states,
|
146 |
+
attentions=bert_outputs.attentions,
|
147 |
+
)
|
148 |
+
|
149 |
+
def predict(self, sentences: List[str], tokenizer: BertTokenizerFast, padding='longest'):
|
150 |
+
# step 1: encode the sentences through using the tokenizer, and get the input tensors + prefix id tensors
|
151 |
+
inputs = encode_sentences_for_bert_for_prefix_marking(tokenizer, sentences, padding)
|
152 |
+
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
153 |
+
|
154 |
+
# run through bert
|
155 |
+
logits = self.forward(**inputs, return_dict=True).logits
|
156 |
+
return parse_logits(inputs, sentences, tokenizer, logits)
|
157 |
+
|
158 |
+
def parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.FloatTensor):
|
159 |
+
# extract the predictions by argmaxing the final dimension (batch x sequence x prefixes x prediction)
|
160 |
+
logit_preds = torch.argmax(logits, axis=3)
|
161 |
+
|
162 |
+
ret = []
|
163 |
+
|
164 |
+
for sent_idx,sent_ids in enumerate(inputs['input_ids']):
|
165 |
+
tokens = tokenizer.convert_ids_to_tokens(sent_ids)
|
166 |
+
ret.append([])
|
167 |
+
for tok_idx,token in enumerate(tokens):
|
168 |
+
# If we've reached the pad token, then we are at the end
|
169 |
+
if token == tokenizer.pad_token: continue
|
170 |
+
if token.startswith('##'): continue
|
171 |
+
|
172 |
+
# combine the next tokens in? only if it's a breakup
|
173 |
+
next_tok_idx = tok_idx + 1
|
174 |
+
while next_tok_idx < len(tokens) and tokens[next_tok_idx].startswith('##'):
|
175 |
+
token += tokens[next_tok_idx][2:]
|
176 |
+
next_tok_idx += 1
|
177 |
+
|
178 |
+
prefix_len = get_predicted_prefix_len_from_logits(token, logit_preds[sent_idx, tok_idx])
|
179 |
+
|
180 |
+
if not prefix_len:
|
181 |
+
ret[-1].append([token])
|
182 |
+
else:
|
183 |
+
ret[-1].append([token[:prefix_len], token[prefix_len:]])
|
184 |
+
return ret
|
185 |
+
|
186 |
+
def encode_sentences_for_bert_for_prefix_marking(tokenizer: BertTokenizerFast, sentences: List[str], padding='longest', truncation=True):
|
187 |
+
inputs = tokenizer(sentences, padding=padding, truncation=truncation, return_tensors='pt')
|
188 |
+
|
189 |
+
# create our prefix_id_options array which will be like the input ids shape but with an addtional
|
190 |
+
# dimension containing for each prefix whether it can be for that word
|
191 |
+
prefix_id_options = torch.full(inputs['input_ids'].shape + (TOTAL_POSSIBLE_PREFIX_CLASSES,), TOTAL_POSSIBLE_PREFIX_CLASSES, dtype=torch.long)
|
192 |
+
|
193 |
+
# go through each token, and fill in the vector accordingly
|
194 |
+
for sent_idx, sent_ids in enumerate(inputs['input_ids']):
|
195 |
+
tokens = tokenizer.convert_ids_to_tokens(sent_ids)
|
196 |
+
for tok_idx, token in enumerate(tokens):
|
197 |
+
# if the first letter isn't a valid prefix letter, nothing to talk about
|
198 |
+
if len(token) < 2 or not token[0] in PREFIXES_TO_CLASS: continue
|
199 |
+
|
200 |
+
# combine the next tokens in? only if it's a breakup
|
201 |
+
next_tok_idx = tok_idx + 1
|
202 |
+
while next_tok_idx < len(tokens) and tokens[next_tok_idx].startswith('##'):
|
203 |
+
token += tokens[next_tok_idx][2:]
|
204 |
+
next_tok_idx += 1
|
205 |
+
|
206 |
+
# find all the possible prefixes - and mark them as 0 (and in the possible mark it as it's value for embed lookup)
|
207 |
+
for pre_class in get_prefix_classes_from_str(token):
|
208 |
+
prefix_id_options[sent_idx, tok_idx, pre_class] = pre_class
|
209 |
+
|
210 |
+
inputs['prefix_class_id_options'] = prefix_id_options
|
211 |
+
return inputs
|
212 |
+
|
213 |
+
def get_predicted_prefix_len_from_logits(token, token_logits):
|
214 |
+
# Go through each possible prefix, and check if the prefix is yes - and if
|
215 |
+
# so increase the counter of the matched length, otherwise break out. That will solve cases
|
216 |
+
# of predicting prefix combinations that don't exist on the word.
|
217 |
+
# For example, if we have the word ושכשהלכתי and the model predict ו & כש, then we will only
|
218 |
+
# take the vuv because in order to get the כש we need the ש as well.
|
219 |
+
# Two extra items:
|
220 |
+
# 1] Don't allow the same prefix multiple times
|
221 |
+
# 2] Always check that the word starts with that prefix - otherwise it's bad
|
222 |
+
# (except for the case of multi-letter prefix, where we force the next to be last)
|
223 |
+
cur_len, skip_next, last_check, seen_prefixes = 0, False, False, set()
|
224 |
+
for prefix in get_prefixes_from_str(token):
|
225 |
+
# Are we skipping this prefix? This will be the case where we matched כש, don't allow ש
|
226 |
+
if skip_next:
|
227 |
+
skip_next = False
|
228 |
+
continue
|
229 |
+
# check for duplicate prefixes, we don't allow two of the same prefix
|
230 |
+
# if it predicted two of the same, then we will break out
|
231 |
+
if prefix in seen_prefixes: break
|
232 |
+
seen_prefixes.add(prefix)
|
233 |
+
|
234 |
+
# check if we predicted this prefix
|
235 |
+
if token_logits[PREFIXES_TO_CLASS[prefix]].item():
|
236 |
+
cur_len += len(prefix)
|
237 |
+
if last_check: break
|
238 |
+
skip_next = len(prefix) > 1
|
239 |
+
# Otherwise, we predicted no. If we didn't, then this is the end of the prefix
|
240 |
+
# and time to break out. *Except* if it's a multi letter prefix, then we allow
|
241 |
+
# just the next letter - e.g., if כש doesn't match, then we allow כ, but then we know
|
242 |
+
# the word continues with a ש, and if it's not כש, then it's not כ-ש- (invalid)
|
243 |
+
elif len(prefix) > 1:
|
244 |
+
last_check = True
|
245 |
+
else:
|
246 |
+
break
|
247 |
+
|
248 |
+
return cur_len
|
BertForSyntaxParsing.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from transformers.utils import ModelOutput
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from typing import Dict, List, Tuple, Optional, Union
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
|
8 |
+
|
9 |
+
ALL_FUNCTION_LABELS = ["nsubj", "punct", "mark", "case", "fixed", "obl", "det", "amod", "acl:relcl", "nmod", "cc", "conj", "root", "compound", "cop", "compound:affix", "advmod", "nummod", "appos", "nsubj:pass", "nmod:poss", "xcomp", "obj", "aux", "parataxis", "advcl", "ccomp", "csubj", "acl", "obl:tmod", "csubj:pass", "dep", "dislocated", "nmod:tmod", "nmod:npmod", "flat", "obl:npmod", "goeswith", "reparandum", "orphan", "list", "discourse", "iobj", "vocative", "expl", "flat:name"]
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class SyntaxLogitsOutput(ModelOutput):
|
13 |
+
dependency_logits: torch.FloatTensor = None
|
14 |
+
function_logits: torch.FloatTensor = None
|
15 |
+
dependency_head_indices: torch.LongTensor = None
|
16 |
+
|
17 |
+
def detach(self):
|
18 |
+
return SyntaxTaggingOutput(self.dependency_logits.detach(), self.function_logits.detach(), self.dependency_head_indices.detach())
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class SyntaxTaggingOutput(ModelOutput):
|
22 |
+
loss: Optional[torch.FloatTensor] = None
|
23 |
+
logits: Optional[SyntaxLogitsOutput] = None
|
24 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
25 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class SyntaxLabels(ModelOutput):
|
29 |
+
dependency_labels: Optional[torch.LongTensor] = None
|
30 |
+
function_labels: Optional[torch.LongTensor] = None
|
31 |
+
|
32 |
+
def detach(self):
|
33 |
+
return SyntaxLabels(self.dependency_labels.detach(), self.function_labels.detach())
|
34 |
+
|
35 |
+
def to(self, device):
|
36 |
+
return SyntaxLabels(self.dependency_labels.to(device), self.function_labels.to(device))
|
37 |
+
|
38 |
+
class BertSyntaxParsingHead(nn.Module):
|
39 |
+
def __init__(self, config):
|
40 |
+
super().__init__()
|
41 |
+
self.config = config
|
42 |
+
|
43 |
+
# the attention query & key values
|
44 |
+
self.head_size = config.syntax_head_size# int(config.hidden_size / config.num_attention_heads * 2)
|
45 |
+
self.query = nn.Linear(config.hidden_size, self.head_size)
|
46 |
+
self.key = nn.Linear(config.hidden_size, self.head_size)
|
47 |
+
# the function classifier gets two encoding values and predicts the labels
|
48 |
+
self.num_function_classes = len(ALL_FUNCTION_LABELS)
|
49 |
+
self.cls = nn.Linear(config.hidden_size * 2, self.num_function_classes)
|
50 |
+
|
51 |
+
def forward(
|
52 |
+
self,
|
53 |
+
hidden_states: torch.Tensor,
|
54 |
+
extended_attention_mask: Optional[torch.Tensor],
|
55 |
+
labels: Optional[SyntaxLabels] = None,
|
56 |
+
compute_mst: bool = False) -> Tuple[torch.Tensor, SyntaxLogitsOutput]:
|
57 |
+
|
58 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
59 |
+
query_layer = self.query(hidden_states)
|
60 |
+
key_layer = self.key(hidden_states)
|
61 |
+
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / math.sqrt(self.head_size)
|
62 |
+
|
63 |
+
# add in the attention mask
|
64 |
+
if extended_attention_mask is not None:
|
65 |
+
if extended_attention_mask.ndim == 4:
|
66 |
+
extended_attention_mask = extended_attention_mask.squeeze(1)
|
67 |
+
attention_scores += extended_attention_mask# batch x seq x seq
|
68 |
+
|
69 |
+
# At this point take the hidden_state of the word and of the dependency word, and predict the function
|
70 |
+
# If labels are provided, use the labels.
|
71 |
+
if self.training and labels is not None:
|
72 |
+
# Note that the labels can have -100, so just set those to zero with a max
|
73 |
+
dep_indices = labels.dependency_labels.clamp_min(0)
|
74 |
+
# Otherwise - check if he wants the MST or just the argmax
|
75 |
+
elif compute_mst:
|
76 |
+
dep_indices = compute_mst_tree(attention_scores)
|
77 |
+
else:
|
78 |
+
dep_indices = torch.argmax(attention_scores, dim=-1)
|
79 |
+
|
80 |
+
# After we retrieved the dependency indicies, create a tensor of teh batch indices, and and retrieve the vectors of the heads to calculate the function
|
81 |
+
batch_indices = torch.arange(dep_indices.size(0)).view(-1, 1).expand(-1, dep_indices.size(1)).to(dep_indices.device)
|
82 |
+
dep_vectors = hidden_states[batch_indices, dep_indices, :] # batch x seq x dim
|
83 |
+
|
84 |
+
# concatenate that with the last hidden states, and send to the classifier output
|
85 |
+
cls_inputs = torch.cat((hidden_states, dep_vectors), dim=-1)
|
86 |
+
function_logits = self.cls(cls_inputs)
|
87 |
+
|
88 |
+
loss = None
|
89 |
+
if labels is not None:
|
90 |
+
loss_fct = nn.CrossEntropyLoss()
|
91 |
+
# step 1: dependency scores loss - this is applied to the attention scores
|
92 |
+
loss = loss_fct(attention_scores.view(-1, hidden_states.size(-2)), labels.dependency_labels.view(-1))
|
93 |
+
# step 2: function loss
|
94 |
+
loss += loss_fct(function_logits.view(-1, self.num_function_classes), labels.function_labels.view(-1))
|
95 |
+
|
96 |
+
return (loss, SyntaxLogitsOutput(attention_scores, function_logits, dep_indices))
|
97 |
+
|
98 |
+
|
99 |
+
class BertForSyntaxParsing(BertPreTrainedModel):
|
100 |
+
|
101 |
+
def __init__(self, config):
|
102 |
+
super().__init__(config)
|
103 |
+
|
104 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
105 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
106 |
+
self.syntax = BertSyntaxParsingHead(config)
|
107 |
+
|
108 |
+
# Initialize weights and apply final processing
|
109 |
+
self.post_init()
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
input_ids: Optional[torch.Tensor] = None,
|
114 |
+
attention_mask: Optional[torch.Tensor] = None,
|
115 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
116 |
+
position_ids: Optional[torch.Tensor] = None,
|
117 |
+
labels: Optional[SyntaxLabels] = None,
|
118 |
+
head_mask: Optional[torch.Tensor] = None,
|
119 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
120 |
+
output_attentions: Optional[bool] = None,
|
121 |
+
output_hidden_states: Optional[bool] = None,
|
122 |
+
return_dict: Optional[bool] = None,
|
123 |
+
compute_syntax_mst: Optional[bool] = None,
|
124 |
+
):
|
125 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
126 |
+
|
127 |
+
bert_outputs = self.bert(
|
128 |
+
input_ids,
|
129 |
+
attention_mask=attention_mask,
|
130 |
+
token_type_ids=token_type_ids,
|
131 |
+
position_ids=position_ids,
|
132 |
+
head_mask=head_mask,
|
133 |
+
inputs_embeds=inputs_embeds,
|
134 |
+
output_attentions=output_attentions,
|
135 |
+
output_hidden_states=output_hidden_states,
|
136 |
+
return_dict=return_dict,
|
137 |
+
)
|
138 |
+
|
139 |
+
extended_attention_mask = None
|
140 |
+
if attention_mask is not None:
|
141 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size())
|
142 |
+
# apply the syntax head
|
143 |
+
loss, logits = self.syntax(self.dropout(bert_outputs[0]), extended_attention_mask, labels, compute_syntax_mst)
|
144 |
+
|
145 |
+
if not return_dict:
|
146 |
+
return (loss,(logits.dependency_logits, logits.function_logits)) + bert_outputs[2:]
|
147 |
+
|
148 |
+
return SyntaxTaggingOutput(
|
149 |
+
loss=loss,
|
150 |
+
logits=logits,
|
151 |
+
hidden_states=bert_outputs.hidden_states,
|
152 |
+
attentions=bert_outputs.attentions,
|
153 |
+
)
|
154 |
+
|
155 |
+
def predict(self, sentences: Union[str, List[str]], tokenizer: BertTokenizerFast, compute_mst=True):
|
156 |
+
if isinstance(sentences, str):
|
157 |
+
sentences = [sentences]
|
158 |
+
|
159 |
+
# predict the logits for the sentence
|
160 |
+
inputs = tokenizer(sentences, padding='longest', truncation=True, return_tensors='pt')
|
161 |
+
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
162 |
+
logits = self.forward(**inputs, return_dict=True, compute_syntax_mst=compute_mst).logits
|
163 |
+
return parse_logits(inputs, sentences, tokenizer, logits)
|
164 |
+
|
165 |
+
def parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: SyntaxLogitsOutput):
|
166 |
+
outputs = []
|
167 |
+
for i in range(len(sentences)):
|
168 |
+
deps = logits.dependency_head_indices[i].tolist()
|
169 |
+
funcs = logits.function_logits.argmax(-1)[i].tolist()
|
170 |
+
toks = tokenizer.convert_ids_to_tokens(inputs['input_ids'][i])[1:-1] # ignore cls and sep
|
171 |
+
|
172 |
+
# first, go through the tokens and create a mapping between each dependency index and the index without wordpieces
|
173 |
+
# wordpieces. At the same time, append the wordpieces in
|
174 |
+
idx_mapping = {-1:-1} # default root
|
175 |
+
real_idx = -1
|
176 |
+
for i in range(len(toks)):
|
177 |
+
if not toks[i].startswith('##'):
|
178 |
+
real_idx += 1
|
179 |
+
idx_mapping[i] = real_idx
|
180 |
+
|
181 |
+
# build our tree, keeping tracking of the root idx
|
182 |
+
tree = []
|
183 |
+
root_idx = 0
|
184 |
+
for i in range(len(toks)):
|
185 |
+
if toks[i].startswith('##'):
|
186 |
+
tree[-1]['word'] += toks[i][2:]
|
187 |
+
continue
|
188 |
+
|
189 |
+
dep_idx = deps[i + 1] - 1 # increase 1 for cls, decrease 1 for cls
|
190 |
+
dep_head = 'root' if dep_idx == -1 else toks[dep_idx]
|
191 |
+
dep_func = ALL_FUNCTION_LABELS[funcs[i + 1]]
|
192 |
+
|
193 |
+
if dep_head == 'root': root_idx = len(tree)
|
194 |
+
tree.append(dict(word=toks[i], dep_head_idx=idx_mapping[dep_idx], dep_func=dep_func))
|
195 |
+
# append the head word
|
196 |
+
for d in tree:
|
197 |
+
d['dep_head'] = tree[d['dep_head_idx']]['word']
|
198 |
+
|
199 |
+
outputs.append(dict(tree=tree, root_idx=root_idx))
|
200 |
+
return outputs
|
201 |
+
|
202 |
+
|
203 |
+
def compute_mst_tree(attention_scores: torch.Tensor):
|
204 |
+
# attention scores should be 3 dimensions - batch x seq x seq (if it is 2 - just unsqueeze)
|
205 |
+
if attention_scores.ndim == 2: attention_scores = attention_scores.unsqueeze(0)
|
206 |
+
if attention_scores.ndim != 3 or attention_scores.shape[1] != attention_scores.shape[2]:
|
207 |
+
raise ValueError(f'Expected attention scores to be of shape batch x seq x seq, instead got {attention_scores.shape}')
|
208 |
+
|
209 |
+
batch_size, seq_len, _ = attention_scores.shape
|
210 |
+
# start by softmaxing so the scores are comparable
|
211 |
+
attention_scores = attention_scores.softmax(dim=-1)
|
212 |
+
|
213 |
+
# set the values for the CLS and sep to all by very low, so they never get chosen as a replacement arc
|
214 |
+
attention_scores[:, 0, :] = -10000
|
215 |
+
attention_scores[:, -1, :] = -10000
|
216 |
+
attention_scores[:, :, -1] = -10000 # can never predict sep
|
217 |
+
|
218 |
+
# find the root, and make him super high so we never have a conflict
|
219 |
+
root_cands = torch.argsort(attention_scores[:, :, 0], dim=-1)
|
220 |
+
batch_indices = torch.arange(batch_size, device=root_cands.device)
|
221 |
+
attention_scores[batch_indices.unsqueeze(1), root_cands, 0] = -10000
|
222 |
+
attention_scores[batch_indices, root_cands[:, -1], 0] = 10000
|
223 |
+
|
224 |
+
# we start by getting the argmax for each score, and then computing the cycles and contracting them
|
225 |
+
sorted_indices = torch.argsort(attention_scores, dim=-1, descending=True)
|
226 |
+
indices = sorted_indices[:, :, 0].clone() # take the argmax
|
227 |
+
|
228 |
+
# go through each batch item and make sure our tree works
|
229 |
+
for batch_idx in range(batch_size):
|
230 |
+
# We have one root - detect the cycles and contract them. A cycle can never contain the root so really
|
231 |
+
# for every cycle, we look at all the nodes, and find the highest arc out of the cycle for any values. Replace that and tada
|
232 |
+
has_cycle, cycle_nodes = detect_cycle(indices[batch_idx])
|
233 |
+
while has_cycle:
|
234 |
+
base_idx, head_idx = choose_contracting_arc(indices[batch_idx], sorted_indices[batch_idx], cycle_nodes, attention_scores[batch_idx])
|
235 |
+
indices[batch_idx, base_idx] = head_idx
|
236 |
+
# find the next cycle
|
237 |
+
has_cycle, cycle_nodes = detect_cycle(indices[batch_idx])
|
238 |
+
|
239 |
+
return indices
|
240 |
+
|
241 |
+
def detect_cycle(indices: torch.LongTensor):
|
242 |
+
# Simple cycle detection algorithm
|
243 |
+
# Returns a boolean indicating if a cycle is detected and the nodes involved in the cycle
|
244 |
+
visited = set()
|
245 |
+
for node in range(1, len(indices) - 1): # ignore the CLS/SEP tokens
|
246 |
+
if node in visited:
|
247 |
+
continue
|
248 |
+
current_path = set()
|
249 |
+
while node not in visited:
|
250 |
+
visited.add(node)
|
251 |
+
current_path.add(node)
|
252 |
+
node = indices[node].item()
|
253 |
+
if node == 0: break # roots never point to anything
|
254 |
+
if node in current_path:
|
255 |
+
return True, current_path # Cycle detected
|
256 |
+
return False, None
|
257 |
+
|
258 |
+
def choose_contracting_arc(indices: torch.LongTensor, sorted_indices: torch.LongTensor, cycle_nodes: set, scores: torch.FloatTensor):
|
259 |
+
# Chooses the highest-scoring, non-cycling arc from a graph. Iterates through 'cycle_nodes' to find
|
260 |
+
# the best arc based on 'scores', avoiding cycles and zero node connections.
|
261 |
+
# For each node, we only look at the next highest scoring non-cycling arc
|
262 |
+
best_base_idx, best_head_idx = -1, -1
|
263 |
+
score = float('-inf')
|
264 |
+
|
265 |
+
# convert the indices to a list once, to avoid multiple conversions (saves a few seconds)
|
266 |
+
currents = indices.tolist()
|
267 |
+
for base_node in cycle_nodes:
|
268 |
+
# we don't want to take anything that has a higher score than the current value - we can end up in an endless loop
|
269 |
+
# Since the indices are sorted, as soon as we find our current item, we can move on to the next.
|
270 |
+
current = currents[base_node]
|
271 |
+
found_current = False
|
272 |
+
|
273 |
+
for head_node in sorted_indices[base_node].tolist():
|
274 |
+
if head_node == current:
|
275 |
+
found_current = True
|
276 |
+
continue
|
277 |
+
if not found_current or head_node in cycle_nodes or head_node == 0:
|
278 |
+
continue
|
279 |
+
|
280 |
+
current_score = scores[base_node, head_node].item()
|
281 |
+
if current_score > score:
|
282 |
+
best_base_idx, best_head_idx, score = base_node, head_node, current_score
|
283 |
+
break
|
284 |
+
|
285 |
+
return best_base_idx, best_head_idx
|