flan-xl-gen6 / README.md
devvanshhh's picture
Model save
66a495d
|
raw
history blame
2.32 kB
---
base_model: ybelkada/flan-t5-xl-sharded-bf16
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-xl-gen6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-xl-gen6
This model is a fine-tuned version of [ybelkada/flan-t5-xl-sharded-bf16](https://huggingface.co./ybelkada/flan-t5-xl-sharded-bf16) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4978
- Rouge1: 29.5362
- Rouge2: 20.6621
- Rougel: 25.7689
- Rougelsum: 26.2351
- Gen Len: 12.7388
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 800
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 328 | 0.6921 | 34.9112 | 26.7503 | 31.4124 | 31.7295 | 10.0172 |
| 6.8746 | 2.0 | 656 | 0.6025 | 33.9134 | 25.3236 | 30.1968 | 30.472 | 10.8454 |
| 6.8746 | 3.0 | 984 | 0.5687 | 31.6178 | 22.9463 | 27.8758 | 28.3572 | 11.8729 |
| 0.6462 | 4.0 | 1312 | 0.5355 | 30.8157 | 22.1783 | 27.1641 | 27.569 | 12.1306 |
| 0.5618 | 5.0 | 1640 | 0.5160 | 29.9183 | 21.0842 | 26.1671 | 26.5965 | 12.5017 |
| 0.5618 | 6.0 | 1968 | 0.5025 | 29.7823 | 21.1443 | 26.0286 | 26.5215 | 12.5086 |
| 0.498 | 7.0 | 2296 | 0.4978 | 29.1043 | 20.2391 | 25.3347 | 25.804 | 12.8969 |
| 0.4551 | 8.0 | 2624 | 0.4978 | 29.5362 | 20.6621 | 25.7689 | 26.2351 | 12.7388 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0