LLMGUARD / README.md
devhem's picture
Model save
aa1ce8c verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: LLMGUARD
    results: []

LLMGUARD

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6730
  • Accuracy: 0.7628

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 32
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2334 1.0 876 1.8027 0.4071
1.6018 2.0 1752 1.1836 0.6644
0.9703 3.0 2628 0.8345 0.7433
0.7557 4.0 3504 0.7281 0.7591
0.7028 5.0 4380 0.6809 0.7717
0.6372 6.0 5256 0.6530 0.7768
0.6074 7.0 6132 0.6411 0.7787
0.5809 8.0 7008 0.6292 0.7785
0.5594 9.0 7884 0.6255 0.7832
0.5452 10.0 8760 0.6334 0.7797
0.5334 11.0 9636 0.6225 0.7761
0.5091 12.0 10512 0.6347 0.7734
0.493 13.0 11388 0.6217 0.7794
0.4883 14.0 12264 0.6259 0.7782
0.4746 15.0 13140 0.6265 0.7725
0.4698 16.0 14016 0.6351 0.7728
0.4531 17.0 14892 0.6401 0.7734
0.4579 18.0 15768 0.6435 0.7731
0.4412 19.0 16644 0.6391 0.7710
0.4377 20.0 17520 0.6432 0.7705
0.4362 21.0 18396 0.6500 0.7681
0.4269 22.0 19272 0.6541 0.7674
0.4227 23.0 20148 0.6555 0.7658
0.4196 24.0 21024 0.6569 0.7678
0.4216 25.0 21900 0.6608 0.7660
0.4107 26.0 22776 0.6651 0.7672
0.4118 27.0 23652 0.6629 0.7645
0.4054 28.0 24528 0.6685 0.7624
0.4112 29.0 25404 0.6705 0.7642
0.3999 30.0 26280 0.6724 0.7625
0.405 31.0 27156 0.6721 0.7628
0.394 32.0 28032 0.6730 0.7628

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0