LLMGUARD-x

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8936
  • Accuracy: 0.7084

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 32
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7163 1.0 1332 0.7270 0.7649
0.6975 2.0 2664 0.7528 0.7467
0.6864 3.0 3996 0.8722 0.7360
0.7611 4.0 5328 1.0374 0.7241
0.814 5.0 6660 1.0346 0.6928
0.72 6.0 7992 1.1184 0.7023
0.9093 7.0 9324 1.1419 0.6240
1.1656 8.0 10656 1.3607 0.5707
1.0431 9.0 11988 1.1602 0.6464
0.9917 10.0 13320 1.2718 0.6244
1.1101 11.0 14652 1.1973 0.6158
1.1094 12.0 15984 1.1642 0.6128
1.0501 13.0 17316 1.2592 0.6205
0.9821 14.0 18648 1.1294 0.6543
1.026 15.0 19980 1.1774 0.6338
1.0622 16.0 21312 1.2379 0.6338
1.0199 17.0 22644 1.2025 0.6111
0.9903 18.0 23976 1.1224 0.6233
0.9544 19.0 25308 1.1009 0.6436
0.977 20.0 26640 1.0633 0.6500
0.9161 21.0 27972 1.0481 0.6507
0.8816 22.0 29304 1.0135 0.6620
0.8664 23.0 30636 1.0119 0.6830
0.8187 24.0 31968 0.9681 0.6915
0.7799 25.0 33300 1.0124 0.6719
0.7501 26.0 34632 0.9501 0.6928
0.7308 27.0 35964 0.9140 0.6963
0.6957 28.0 37296 0.9413 0.7007
0.6812 29.0 38628 0.9235 0.7055
0.6701 30.0 39960 0.9108 0.7065
0.649 31.0 41292 0.9012 0.7084
0.6345 32.0 42624 0.8936 0.7084

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for devhem/LLMGUARD-x

Finetuned
(7171)
this model