Deprem NER Training Results
precision recall f1-score support
0 0.85 0.91 0.88 734
1 0.77 0.84 0.80 207
2 0.71 0.88 0.79 130
3 0.68 0.76 0.72 94
4 0.80 0.85 0.82 362
5 0.63 0.59 0.61 112
6 0.73 0.82 0.77 108
7 0.55 0.77 0.64 78
8 0.65 0.71 0.68 31
9 0.70 0.85 0.76 117
micro avg 0.77 0.85 0.81 1973
macro avg 0.71 0.80 0.75 1973
weighted avg 0.77 0.85 0.81 1973
samples avg 0.82 0.87 0.83 1973
Preprocessing Funcs
tr_stopwords = stopwords.words('turkish')
tr_stopwords.append("hic")
tr_stopwords.append("dm")
tr_stopwords.append("vs")
tr_stopwords.append("ya")
def remove_punct(tok):
tok = re.sub(r'[^\w\s]', '', tok)
return tok
def normalize(tok):
if tok.isdigit():
tok = "digit"
return tok
def clean(tok):
tok = remove_punct(tok)
tok = normalize(tok)
return tok
def exceptions(tok):
if not tok.isdigit() and len(tok)==1:
return False
if not tok:
return False
if tok in tr_stopwords:
return False
if tok.startswith('#') or tok.startswith("@"):
return False
return True
sm_tok = lambda text: [clean(tok) for tok in text.split(" ") if exceptions(tok)]
Other HyperParams
training_args = TrainingArguments(
output_dir="./output",
evaluation_strategy="epoch",
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
weight_decay=0.01,
report_to=None,
num_train_epochs=4
)
class_weights[0] = 1.0
class_weights[1] = 1.5167249178108022
class_weights[2] = 1.7547338578655642
class_weights[3] = 1.9610520059358458
class_weights[4] = 1.269341370129623
class_weights[5] = 1.8684086209021484
class_weights[6] = 1.8019018017117145
class_weights[7] = 2.110648663094536
class_weights[8] = 3.081208739200435
class_weights[9] = 1.7994815143101963
Threshold: 0.25
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- recall on deprem_private_dataset_v1_2self-reported0.800
- f1 on deprem_private_dataset_v1_2self-reported0.750