Edit model card

Qwen-1.5-1.8B-SQL Model

Description

This model, deltawi/Qwen-1.5-1.8B-SQL, is fine-tuned on SQL generation based on questions and context. It's designed to generate SQL queries from natural language descriptions, leveraging the Qwen 1.5 - 1.8B model.

Installation

To use this model, you need to install the transformers library from Hugging Face. You can do this using pip:

pip install transformers huggingface_hub accelerate peft

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

# Set the device
device = "cuda"  # replace with your device: "cpu", "cuda", "mps"

from transformers import AutoModelForCausalLM, AutoTokenizer
import random 


peft_model_id = "deltawi/Qwen-1.5-1.8B-SQL"
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"

device = "cuda"

model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
model.load_adapter(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(
        "deltawi/Qwen-1.5-1.8B-SQL",
        #model_max_length=2048,
        padding_side="right",
        trust_remote_code=True,
        pad_token='<|endoftext|>'
    )

# Define your question and context
Question = "Your question here"
Context = """
Your SQL context here
"""

# Create the prompt
prompt = f"Question: {Question}\nContext: {Context}"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]

# Prepare the input
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

# Generate the response
generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

# Decode the response
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

More details

  • Base Model: Qwen 1.5-1.8B
  • Fine-tuned for: SQL Query Generation
  • Fine-tuning using LoRA: r=64
  • Training Data: b-mc2/sql-create-context

Framework versions

  • PEFT 0.8.2
Downloads last month
28
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for deltawi/Qwen-1.5-1.8B-SQL

Adapter
(301)
this model

Dataset used to train deltawi/Qwen-1.5-1.8B-SQL

Space using deltawi/Qwen-1.5-1.8B-SQL 1