|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- mistral |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- distillation |
|
- dpo |
|
- rlhf |
|
datasets: |
|
- Intel/orca_dpo_pairs |
|
base_model: teknium/OpenHermes-2.5-Mistral-7B |
|
--- |
|
### Credits: Maxime Labonne https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac |
|
|
|
(With minor alterations) |
|
|
|
# NeuralHermes 2.5 - Mistral 7B |
|
|
|
NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [Intel/orca_dpo_pairs](https://huggingface.co./datasets/Intel/orca_dpo_pairs) dataset. . |
|
|
|
|
|
## Usage |
|
|
|
You can run this model using the following code: |
|
|
|
```python |
|
import transformers |
|
from transformers import AutoTokenizer |
|
|
|
# Format prompt |
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant chatbot."}, |
|
{"role": "user", "content": "What is a Large Language Model?"} |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained(new_model) |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) |
|
|
|
# Create pipeline |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=new_model, |
|
tokenizer=tokenizer |
|
) |
|
|
|
# Generate text |
|
sequences = pipeline( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
max_length=200, |
|
) |
|
print(sequences[0]['generated_text']) |
|
``` |
|
|
|
## Training hyperparameters |
|
|
|
**LoRA**: |
|
* r=16 |
|
* lora_alpha=16 |
|
* lora_dropout=0.05 |
|
* bias="none" |
|
* task_type="CAUSAL_LM" |
|
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] |
|
|
|
**Training arguments**: |
|
* per_device_train_batch_size=2 # Changed from 4 |
|
* gradient_accumulation_steps=4 |
|
* gradient_checkpointing=True |
|
* learning_rate=2e-5 # Changed from 5e-5 |
|
* lr_scheduler_type="cosine" |
|
* max_steps=250 # Changed from 200 |
|
* optim="paged_adamw_32bit" |
|
* warmup_steps=100 |
|
|
|
**DPOTrainer**: |
|
* beta=0.1 |
|
* max_prompt_length=1024 |
|
* max_length=1536 |