File size: 9,029 Bytes
f196edb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
from sklearn.model_selection import train_test_split
import numpy as np
import os
from tqdm.auto import tqdm
import streamlit as st
import matplotlib.pyplot as plt
import torch.nn as nn
# Constants
EPOCHS = 10
VAL_SPLIT = 0.1
VAL_EVERY_STEPS = 1000
BATCH_SIZE = 38
LEARNING_RATE = 5e-5
LOG_EVERY_STEP = True
SAVE_CHECKPOINTS = True
MAX_SEQ_LENGTH = 512
EARLY_STOPPING_PATIENCE = 3
MODEL_NAME = 'albert/albert-base-v2'
LEVEL = 6
OUTPUT_DIR = f'level{LEVEL}'
# Ensure output directory exists
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Load data
df = pd.read_csv(f'level_{LEVEL}.csv')
df.rename(columns={'response': 'text'}, inplace=True)
# Get unique labels for current level and create mapping
labels = sorted(df[str(LEVEL)].unique())
label_to_index = {label: i for i, label in enumerate(labels)}
index_to_label = {i: label for label, i in label_to_index.items()}
num_labels = len(labels)
# Save label mapping for current level
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
# Load parent level ID mapping
parent_level = LEVEL - 1
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
num_parent_labels = len(parent_label_to_index)
# Prepare data for training
df['label'] = df[str(LEVEL)].map(label_to_index)
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
# Tokenizer
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
class TaxonomyDataset(Dataset):
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
self.data = dataframe
self.tokenizer = tokenizer
self.max_len = max_len
self.parent_label_to_index = parent_label_to_index
def __len__(self):
return len(self.data)
def __getitem__(self, index):
text = str(self.data.iloc[index].text)
label = int(self.data.iloc[index].label)
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
encoding = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
# One-hot encode parent ID
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
if parent_id != 0:
parent_index = self.parent_label_to_index.get(parent_id)
if parent_index is not None:
parent_one_hot[parent_index] = 1
return {
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'parent_ids': parent_one_hot,
'labels': torch.tensor(label, dtype=torch.long)
}
# Create datasets and dataloaders
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
# Model Definition
class TaxonomyClassifier(nn.Module):
def __init__(self, base_model_name, num_parent_labels, num_labels):
super().__init__()
self.albert = AlbertModel.from_pretrained(base_model_name)
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
def forward(self, input_ids, attention_mask, parent_ids):
outputs = self.albert(input_ids, attention_mask=attention_mask)
pooled_output = outputs.pooler_output
pooled_output = self.dropout(pooled_output)
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
logits = self.classifier(combined_features)
return logits
# Model Initialization
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Optimizer and scheduler
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
total_steps = len(train_dataloader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
# Loss Function
loss_fn = nn.CrossEntropyLoss()
# Loss tracking
train_losses = []
val_losses = []
val_steps = []
best_val_loss = float('inf')
early_stopping_counter = 0
global_step = 0
# Streamlit setup
st.title(f'Level {LEVEL} Model Training')
progress_bar = st.progress(0)
status_text = st.empty()
train_loss_fig, train_loss_ax = plt.subplots()
val_loss_fig, val_loss_ax = plt.subplots()
train_loss_chart = st.pyplot(train_loss_fig)
val_loss_chart = st.pyplot(val_loss_fig)
def update_loss_charts():
train_loss_ax.clear()
train_loss_ax.plot(range(len(train_losses)), train_losses)
train_loss_ax.set_xlabel("Steps")
train_loss_ax.set_ylabel("Loss")
train_loss_ax.set_title("Training Loss")
train_loss_chart.pyplot(train_loss_fig)
val_loss_ax.clear()
val_loss_ax.plot(val_steps, val_losses)
val_loss_ax.set_xlabel("Steps")
val_loss_ax.set_ylabel("Loss")
val_loss_ax.set_title("Validation Loss")
val_loss_chart.pyplot(val_loss_fig)
# Training loop
for epoch in range(EPOCHS):
model.train()
total_train_loss = 0
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
optimizer.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
parent_ids = batch['parent_ids'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask, parent_ids)
loss = loss_fn(outputs, labels)
total_train_loss += loss.item()
loss.backward()
optimizer.step()
scheduler.step()
global_step += 1
train_losses.append(loss.item())
if LOG_EVERY_STEP:
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
update_loss_charts()
if global_step % VAL_EVERY_STEPS == 0:
model.eval()
total_val_loss = 0
with torch.no_grad():
for val_batch in val_dataloader:
input_ids = val_batch['input_ids'].to(device)
attention_mask = val_batch['attention_mask'].to(device)
parent_ids = val_batch['parent_ids'].to(device)
labels = val_batch['labels'].to(device)
outputs = model(input_ids, attention_mask, parent_ids)
loss = loss_fn(outputs, labels)
total_val_loss += loss.item()
avg_val_loss = total_val_loss / len(val_dataloader)
val_losses.append(avg_val_loss)
val_steps.append(global_step)
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
update_loss_charts()
if SAVE_CHECKPOINTS:
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
os.makedirs(checkpoint_dir, exist_ok=True)
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
tokenizer.save_pretrained(checkpoint_dir)
status_text.text(f"Checkpoint saved at step {global_step}")
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
early_stopping_counter = 0
else:
early_stopping_counter += 1
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
status_text.text(f"Early stopping triggered at step {global_step}")
progress_bar.progress(100)
# Save final model before stopping
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
exit() # Stop training
progress_bar.progress(int((global_step / total_steps) * 100))
avg_train_loss = total_train_loss / len(train_dataloader)
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
# Save final model
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
status_text.success("Training complete!") |