File size: 9,029 Bytes
f196edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
from sklearn.model_selection import train_test_split
import numpy as np
import os
from tqdm.auto import tqdm
import streamlit as st
import matplotlib.pyplot as plt
import torch.nn as nn

# Constants
EPOCHS = 10
VAL_SPLIT = 0.1
VAL_EVERY_STEPS = 1000
BATCH_SIZE = 38
LEARNING_RATE = 5e-5
LOG_EVERY_STEP = True
SAVE_CHECKPOINTS = True
MAX_SEQ_LENGTH = 512
EARLY_STOPPING_PATIENCE = 3
MODEL_NAME = 'albert/albert-base-v2'
LEVEL = 3
OUTPUT_DIR = f'level{LEVEL}'

# Ensure output directory exists
os.makedirs(OUTPUT_DIR, exist_ok=True)

# Load data
df = pd.read_csv(f'level_{LEVEL}.csv')
df.rename(columns={'response': 'text'}, inplace=True)

# Get unique labels for current level and create mapping
labels = sorted(df[str(LEVEL)].unique())
label_to_index = {label: i for i, label in enumerate(labels)}
index_to_label = {i: label for label, i in label_to_index.items()}
num_labels = len(labels)

# Save label mapping for current level
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)

# Load parent level ID mapping
parent_level = LEVEL - 1
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
num_parent_labels = len(parent_label_to_index)

# Prepare data for training
df['label'] = df[str(LEVEL)].map(label_to_index)
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)

# Tokenizer
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)

class TaxonomyDataset(Dataset):
    def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
        self.data = dataframe
        self.tokenizer = tokenizer
        self.max_len = max_len
        self.parent_label_to_index = parent_label_to_index

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        text = str(self.data.iloc[index].text)
        label = int(self.data.iloc[index].label)
        parent_id = int(self.data.iloc[index][str(LEVEL - 1)])

        encoding = self.tokenizer.encode_plus(
            text,
            add_special_tokens=True,
            max_length=self.max_len,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt'
        )

        # One-hot encode parent ID
        parent_one_hot = torch.zeros(len(self.parent_label_to_index))
        if parent_id != 0:
            parent_index = self.parent_label_to_index.get(parent_id)
            if parent_index is not None:
                parent_one_hot[parent_index] = 1

        return {
            'input_ids': encoding['input_ids'].flatten(),
            'attention_mask': encoding['attention_mask'].flatten(),
            'parent_ids': parent_one_hot,
            'labels': torch.tensor(label, dtype=torch.long)
        }

# Create datasets and dataloaders
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)

train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)

# Model Definition
class TaxonomyClassifier(nn.Module):
    def __init__(self, base_model_name, num_parent_labels, num_labels):
        super().__init__()
        self.albert = AlbertModel.from_pretrained(base_model_name)
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)

    def forward(self, input_ids, attention_mask, parent_ids):
        outputs = self.albert(input_ids, attention_mask=attention_mask)
        pooled_output = outputs.pooler_output
        pooled_output = self.dropout(pooled_output)
        combined_features = torch.cat((pooled_output, parent_ids), dim=1)
        logits = self.classifier(combined_features)
        return logits

# Model Initialization
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Optimizer and scheduler
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
total_steps = len(train_dataloader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)

# Loss Function
loss_fn = nn.CrossEntropyLoss()

# Loss tracking
train_losses = []
val_losses = []
val_steps = []
best_val_loss = float('inf')
early_stopping_counter = 0
global_step = 0

# Streamlit setup
st.title(f'Level {LEVEL} Model Training')
progress_bar = st.progress(0)
status_text = st.empty()
train_loss_fig, train_loss_ax = plt.subplots()
val_loss_fig, val_loss_ax = plt.subplots()
train_loss_chart = st.pyplot(train_loss_fig)
val_loss_chart = st.pyplot(val_loss_fig)

def update_loss_charts():
    train_loss_ax.clear()
    train_loss_ax.plot(range(len(train_losses)), train_losses)
    train_loss_ax.set_xlabel("Steps")
    train_loss_ax.set_ylabel("Loss")
    train_loss_ax.set_title("Training Loss")
    train_loss_chart.pyplot(train_loss_fig)

    val_loss_ax.clear()
    val_loss_ax.plot(val_steps, val_losses)
    val_loss_ax.set_xlabel("Steps")
    val_loss_ax.set_ylabel("Loss")
    val_loss_ax.set_title("Validation Loss")
    val_loss_chart.pyplot(val_loss_fig)

# Training loop
for epoch in range(EPOCHS):
    model.train()
    total_train_loss = 0
    for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
        optimizer.zero_grad()
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        parent_ids = batch['parent_ids'].to(device)
        labels = batch['labels'].to(device)
        outputs = model(input_ids, attention_mask, parent_ids)
        loss = loss_fn(outputs, labels)
        total_train_loss += loss.item()
        loss.backward()
        optimizer.step()
        scheduler.step()
        global_step += 1

        train_losses.append(loss.item())

        if LOG_EVERY_STEP:
            status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
            update_loss_charts()

        if global_step % VAL_EVERY_STEPS == 0:
            model.eval()
            total_val_loss = 0
            with torch.no_grad():
                for val_batch in val_dataloader:
                    input_ids = val_batch['input_ids'].to(device)
                    attention_mask = val_batch['attention_mask'].to(device)
                    parent_ids = val_batch['parent_ids'].to(device)
                    labels = val_batch['labels'].to(device)
                    outputs = model(input_ids, attention_mask, parent_ids)
                    loss = loss_fn(outputs, labels)
                    total_val_loss += loss.item()

            avg_val_loss = total_val_loss / len(val_dataloader)
            val_losses.append(avg_val_loss)
            val_steps.append(global_step)
            status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
            update_loss_charts()

            if SAVE_CHECKPOINTS:
                checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
                os.makedirs(checkpoint_dir, exist_ok=True)
                torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
                tokenizer.save_pretrained(checkpoint_dir)
                status_text.text(f"Checkpoint saved at step {global_step}")

            if avg_val_loss < best_val_loss:
                best_val_loss = avg_val_loss
                early_stopping_counter = 0
            else:
                early_stopping_counter += 1
                if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
                    status_text.text(f"Early stopping triggered at step {global_step}")
                    progress_bar.progress(100)
                    # Save final model before stopping
                    torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
                    tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
                    exit() # Stop training
        progress_bar.progress(int((global_step / total_steps) * 100))

    avg_train_loss = total_train_loss / len(train_dataloader)
    print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')

# Save final model
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
status_text.success("Training complete!")