DeepSeek Chat

[🏠Homepage] | [🤖 Chat with DeepSeek LLM] | [Discord] | [Wechat(微信)]

Paper Link👁️


1. Introduction to DeepSeekMoE

See the Introduction for more details.

2. How to Use

Here give some examples of how to use our model.

Text Completion

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/deepseek-moe-16b-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)

3. License

This code repository is licensed under the MIT License. The use of DeepSeekMoE models is subject to the Model License. DeepSeekMoE supports commercial use.

See the LICENSE-MODEL for more details.

4. Contact

If you have any questions, please raise an issue or contact us at [email protected].

Downloads last month
12,220
Safetensors
Model size
16.4B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Spaces using deepseek-ai/deepseek-moe-16b-base 5

Collection including deepseek-ai/deepseek-moe-16b-base