File size: 33,342 Bytes
746c674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 |
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.distributions import multinomial, categorical
import torch.optim as optim
import math
try:
from . import helpers as h
from . import ai
from . import scheduling as S
except:
import helpers as h
import ai
import scheduling as S
import math
import abc
from torch.nn.modules.conv import _ConvNd
from enum import Enum
class InferModule(nn.Module):
def __init__(self, *args, normal = False, ibp_init = False, **kwargs):
self.args = args
self.kwargs = kwargs
self.infered = False
self.normal = normal
self.ibp_init = ibp_init
def infer(self, in_shape, global_args = None):
""" this is really actually stateful. """
if self.infered:
return self
self.infered = True
super(InferModule, self).__init__()
self.inShape = list(in_shape)
self.outShape = list(self.init(list(in_shape), *self.args, global_args = global_args, **self.kwargs))
if self.outShape is None:
raise "init should set the out_shape"
self.reset_parameters()
return self
def reset_parameters(self):
if not hasattr(self,'weight') or self.weight is None:
return
n = h.product(self.weight.size()) / self.outShape[0]
stdv = 1 / math.sqrt(n)
if self.ibp_init:
torch.nn.init.orthogonal_(self.weight.data)
elif self.normal:
self.weight.data.normal_(0, stdv)
self.weight.data.clamp_(-1, 1)
else:
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
if self.ibp_init:
self.bias.data.zero_()
elif self.normal:
self.bias.data.normal_(0, stdv)
self.bias.data.clamp_(-1, 1)
else:
self.bias.data.uniform_(-stdv, stdv)
def clip_norm(self):
if not hasattr(self, "weight"):
return
if not hasattr(self,"weight_g"):
if torch.__version__[0] == "0":
nn.utils.weight_norm(self, dim=None)
else:
nn.utils.weight_norm(self)
self.weight_g.data.clamp_(-h.max_c_for_norm, h.max_c_for_norm)
if torch.__version__[0] != "0":
self.weight_v.data.clamp_(-h.max_c_for_norm * 10000,h.max_c_for_norm * 10000)
if hasattr(self, "bias"):
self.bias.data.clamp_(-h.max_c_for_norm * 10000, h.max_c_for_norm * 10000)
def regularize(self, p):
reg = 0
if torch.__version__[0] == "0":
for param in self.parameters():
reg += param.norm(p)
else:
if hasattr(self, "weight_g"):
reg += self.weight_g.norm().sum()
reg += self.weight_v.norm().sum()
elif hasattr(self, "weight"):
reg += self.weight.norm().sum()
if hasattr(self, "bias"):
reg += self.bias.view(-1).norm(p=p).sum()
return reg
def remove_norm(self):
if hasattr(self,"weight_g"):
torch.nn.utils.remove_weight_norm(self)
def showNet(self, t = ""):
print(t + self.__class__.__name__)
def printNet(self, f):
print(self.__class__.__name__, file=f)
@abc.abstractmethod
def forward(self, *args, **kargs):
pass
def __call__(self, *args, onyx=False, **kargs):
if onyx:
return self.forward(*args, onyx=onyx, **kargs)
else:
return super(InferModule, self).__call__(*args, **kargs)
@abc.abstractmethod
def neuronCount(self):
pass
def depth(self):
return 0
def getShapeConv(in_shape, conv_shape, stride = 1, padding = 0):
inChan, inH, inW = in_shape
outChan, kH, kW = conv_shape[:3]
outH = 1 + int((2 * padding + inH - kH) / stride)
outW = 1 + int((2 * padding + inW - kW) / stride)
return (outChan, outH, outW)
def getShapeConvTranspose(in_shape, conv_shape, stride = 1, padding = 0, out_padding=0):
inChan, inH, inW = in_shape
outChan, kH, kW = conv_shape[:3]
outH = (inH - 1 ) * stride - 2 * padding + kH + out_padding
outW = (inW - 1 ) * stride - 2 * padding + kW + out_padding
return (outChan, outH, outW)
class Linear(InferModule):
def init(self, in_shape, out_shape, **kargs):
self.in_neurons = h.product(in_shape)
if isinstance(out_shape, int):
out_shape = [out_shape]
self.out_neurons = h.product(out_shape)
self.weight = torch.nn.Parameter(torch.Tensor(self.in_neurons, self.out_neurons))
self.bias = torch.nn.Parameter(torch.Tensor(self.out_neurons))
return out_shape
def forward(self, x, **kargs):
s = x.size()
x = x.view(s[0], h.product(s[1:]))
return (x.matmul(self.weight) + self.bias).view(s[0], *self.outShape)
def neuronCount(self):
return 0
def showNet(self, t = ""):
print(t + "Linear out=" + str(self.out_neurons))
def printNet(self, f):
print("Linear(" + str(self.out_neurons) + ")" )
print(h.printListsNumpy(list(self.weight.transpose(1,0).data)), file= f)
print(h.printNumpy(self.bias), file= f)
class Activation(InferModule):
def init(self, in_shape, global_args = None, activation = "ReLU", **kargs):
self.activation = [ "ReLU","Sigmoid", "Tanh", "Softplus", "ELU", "SELU"].index(activation)
self.activation_name = activation
return in_shape
def regularize(self, p):
return 0
def forward(self, x, **kargs):
return [lambda x:x.relu(), lambda x:x.sigmoid(), lambda x:x.tanh(), lambda x:x.softplus(), lambda x:x.elu(), lambda x:x.selu()][self.activation](x)
def neuronCount(self):
return h.product(self.outShape)
def depth(self):
return 1
def showNet(self, t = ""):
print(t + self.activation_name)
def printNet(self, f):
pass
class ReLU(Activation):
pass
def activation(*args, batch_norm = False, **kargs):
a = Activation(*args, **kargs)
return Seq(BatchNorm(), a) if batch_norm else a
class Identity(InferModule): # for feigning model equivelence when removing an op
def init(self, in_shape, global_args = None, **kargs):
return in_shape
def forward(self, x, **kargs):
return x
def neuronCount(self):
return 0
def printNet(self, f):
pass
def regularize(self, p):
return 0
def showNet(self, *args, **kargs):
pass
class Dropout(InferModule):
def init(self, in_shape, p=0.5, use_2d = False, alpha_dropout = False, **kargs):
self.p = S.Const.initConst(p)
self.use_2d = use_2d
self.alpha_dropout = alpha_dropout
return in_shape
def forward(self, x, time = 0, **kargs):
if self.training:
with torch.no_grad():
p = self.p.getVal(time = time)
mask = (F.dropout2d if self.use_2d else F.dropout)(h.ones(x.size()),p=p, training=True)
if self.alpha_dropout:
with torch.no_grad():
keep_prob = 1 - p
alpha = -1.7580993408473766
a = math.pow(keep_prob + alpha * alpha * keep_prob * (1 - keep_prob), -0.5)
b = -a * alpha * (1 - keep_prob)
mask = mask * a
return x * mask + b
else:
return x * mask
else:
return x
def neuronCount(self):
return 0
def showNet(self, t = ""):
print(t + "Dropout p=" + str(self.p))
def printNet(self, f):
print("Dropout(" + str(self.p) + ")" )
class PrintActivation(Identity):
def init(self, in_shape, global_args = None, activation = "ReLU", **kargs):
self.activation = activation
return in_shape
def printNet(self, f):
print(self.activation, file = f)
class PrintReLU(PrintActivation):
pass
class Conv2D(InferModule):
def init(self, in_shape, out_channels, kernel_size, stride = 1, global_args = None, bias=True, padding = 0, activation = "ReLU", **kargs):
self.prev = in_shape
self.in_channels = in_shape[0]
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.activation = activation
self.use_softplus = h.default(global_args, 'use_softplus', False)
weights_shape = (self.out_channels, self.in_channels, kernel_size, kernel_size)
self.weight = torch.nn.Parameter(torch.Tensor(*weights_shape))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(weights_shape[0]))
else:
self.bias = None # h.zeros(weights_shape[0])
outshape = getShapeConv(in_shape, (out_channels, kernel_size, kernel_size), stride, padding)
return outshape
def forward(self, input, **kargs):
return input.conv2d(self.weight, bias=self.bias, stride=self.stride, padding = self.padding )
def printNet(self, f): # only complete if we've forwardt stride=1
print("Conv2D", file = f)
sz = list(self.prev)
print(self.activation + ", filters={}, kernel_size={}, input_shape={}, stride={}, padding={}".format(self.out_channels, [self.kernel_size, self.kernel_size], list(reversed(sz)), [self.stride, self.stride], self.padding ), file = f)
print(h.printListsNumpy([[list(p) for p in l ] for l in self.weight.permute(2,3,1,0).data]) , file= f)
print(h.printNumpy(self.bias if self.bias is not None else h.dten(self.out_channels)), file= f)
def showNet(self, t = ""):
sz = list(self.prev)
print(t + "Conv2D, filters={}, kernel_size={}, input_shape={}, stride={}, padding={}".format(self.out_channels, [self.kernel_size, self.kernel_size], list(reversed(sz)), [self.stride, self.stride], self.padding ))
def neuronCount(self):
return 0
class ConvTranspose2D(InferModule):
def init(self, in_shape, out_channels, kernel_size, stride = 1, global_args = None, bias=True, padding = 0, out_padding=0, activation = "ReLU", **kargs):
self.prev = in_shape
self.in_channels = in_shape[0]
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.out_padding = out_padding
self.activation = activation
self.use_softplus = h.default(global_args, 'use_softplus', False)
weights_shape = (self.in_channels, self.out_channels, kernel_size, kernel_size)
self.weight = torch.nn.Parameter(torch.Tensor(*weights_shape))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(weights_shape[0]))
else:
self.bias = None # h.zeros(weights_shape[0])
outshape = getShapeConvTranspose(in_shape, (out_channels, kernel_size, kernel_size), stride, padding, out_padding)
return outshape
def forward(self, input, **kargs):
return input.conv_transpose2d(self.weight, bias=self.bias, stride=self.stride, padding = self.padding, output_padding=self.out_padding)
def printNet(self, f): # only complete if we've forwardt stride=1
print("ConvTranspose2D", file = f)
print(self.activation + ", filters={}, kernel_size={}, input_shape={}".format(self.out_channels, list(self.kernel_size), list(self.prev) ), file = f)
print(h.printListsNumpy([[list(p) for p in l ] for l in self.weight.permute(2,3,1,0).data]) , file= f)
print(h.printNumpy(self.bias), file= f)
def neuronCount(self):
return 0
class MaxPool2D(InferModule):
def init(self, in_shape, kernel_size, stride = None, **kargs):
self.prev = in_shape
self.kernel_size = kernel_size
self.stride = kernel_size if stride is None else stride
return getShapeConv(in_shape, (in_shape[0], kernel_size, kernel_size), stride)
def forward(self, x, **kargs):
return x.max_pool2d(self.kernel_size, self.stride)
def printNet(self, f):
print("MaxPool2D stride={}, kernel_size={}, input_shape={}".format(list(self.stride), list(self.shape[2:]), list(self.prev[1:]+self.prev[:1]) ), file = f)
def neuronCount(self):
return h.product(self.outShape)
class AvgPool2D(InferModule):
def init(self, in_shape, kernel_size, stride = None, **kargs):
self.prev = in_shape
self.kernel_size = kernel_size
self.stride = kernel_size if stride is None else stride
out_size = getShapeConv(in_shape, (in_shape[0], kernel_size, kernel_size), self.stride, padding = 1)
return out_size
def forward(self, x, **kargs):
if h.product(x.size()[2:]) == 1:
return x
return x.avg_pool2d(kernel_size = self.kernel_size, stride = self.stride, padding = 1)
def printNet(self, f):
print("AvgPool2D stride={}, kernel_size={}, input_shape={}".format(list(self.stride), list(self.shape[2:]), list(self.prev[1:]+self.prev[:1]) ), file = f)
def neuronCount(self):
return h.product(self.outShape)
class AdaptiveAvgPool2D(InferModule):
def init(self, in_shape, out_shape, **kargs):
self.prev = in_shape
self.out_shape = list(out_shape)
return [in_shape[0]] + self.out_shape
def forward(self, x, **kargs):
return x.adaptive_avg_pool2d(self.out_shape)
def printNet(self, f):
print("AdaptiveAvgPool2D out_Shape={} input_shape={}".format(list(self.out_shape), list(self.prev[1:]+self.prev[:1]) ), file = f)
def neuronCount(self):
return h.product(self.outShape)
class Normalize(InferModule):
def init(self, in_shape, mean, std, **kargs):
self.mean_v = mean
self.std_v = std
self.mean = h.dten(mean)
self.std = 1 / h.dten(std)
return in_shape
def forward(self, x, **kargs):
mean_ex = self.mean.view(self.mean.shape[0],1,1).expand(*x.size()[1:])
std_ex = self.std.view(self.std.shape[0],1,1).expand(*x.size()[1:])
return (x - mean_ex) * std_ex
def neuronCount(self):
return 0
def printNet(self, f):
print("Normalize mean={} std={}".format(self.mean_v, self.std_v), file = f)
def showNet(self, t = ""):
print(t + "Normalize mean={} std={}".format(self.mean_v, self.std_v))
class Flatten(InferModule):
def init(self, in_shape, **kargs):
return h.product(in_shape)
def forward(self, x, **kargs):
s = x.size()
return x.view(s[0], h.product(s[1:]))
def neuronCount(self):
return 0
class BatchNorm(InferModule):
def init(self, in_shape, track_running_stats = True, momentum = 0.1, eps=1e-5, **kargs):
self.gamma = torch.nn.Parameter(torch.Tensor(*in_shape))
self.beta = torch.nn.Parameter(torch.Tensor(*in_shape))
self.eps = eps
self.track_running_stats = track_running_stats
self.momentum = momentum
self.running_mean = None
self.running_var = None
self.num_batches_tracked = 0
return in_shape
def reset_parameters(self):
self.gamma.data.fill_(1)
self.beta.data.zero_()
def forward(self, x, **kargs):
exponential_average_factor = 0.0
if self.training and self.track_running_stats:
# TODO: if statement only here to tell the jit to skip emitting this when it is None
if self.num_batches_tracked is not None:
self.num_batches_tracked += 1
if self.momentum is None: # use cumulative moving average
exponential_average_factor = 1.0 / float(self.num_batches_tracked)
else: # use exponential moving average
exponential_average_factor = self.momentum
new_mean = x.vanillaTensorPart().detach().mean(dim=0)
new_var = x.vanillaTensorPart().detach().var(dim=0, unbiased=False)
if torch.isnan(new_var * 0).any():
return x
if self.training:
self.running_mean = (1 - exponential_average_factor) * self.running_mean + exponential_average_factor * new_mean if self.running_mean is not None else new_mean
if self.running_var is None:
self.running_var = new_var
else:
q = (1 - exponential_average_factor) * self.running_var
r = exponential_average_factor * new_var
self.running_var = q + r
if self.track_running_stats and self.running_mean is not None and self.running_var is not None:
new_mean = self.running_mean
new_var = self.running_var
diver = 1 / (new_var + self.eps).sqrt()
if torch.isnan(diver).any():
print("Really shouldn't happen ever")
return x
else:
out = (x - new_mean) * diver * self.gamma + self.beta
return out
def neuronCount(self):
return 0
class Unflatten2d(InferModule):
def init(self, in_shape, w, **kargs):
self.w = w
self.outChan = int(h.product(in_shape) / (w * w))
return (self.outChan, self.w, self.w)
def forward(self, x, **kargs):
s = x.size()
return x.view(s[0], self.outChan, self.w, self.w)
def neuronCount(self):
return 0
class View(InferModule):
def init(self, in_shape, out_shape, **kargs):
assert(h.product(in_shape) == h.product(out_shape))
return out_shape
def forward(self, x, **kargs):
s = x.size()
return x.view(s[0], *self.outShape)
def neuronCount(self):
return 0
class Seq(InferModule):
def init(self, in_shape, *layers, **kargs):
self.layers = layers
self.net = nn.Sequential(*layers)
self.prev = in_shape
for s in layers:
in_shape = s.infer(in_shape, **kargs).outShape
return in_shape
def forward(self, x, **kargs):
for l in self.layers:
x = l(x, **kargs)
return x
def clip_norm(self):
for l in self.layers:
l.clip_norm()
def regularize(self, p):
return sum(n.regularize(p) for n in self.layers)
def remove_norm(self):
for l in self.layers:
l.remove_norm()
def printNet(self, f):
for l in self.layers:
l.printNet(f)
def showNet(self, *args, **kargs):
for l in self.layers:
l.showNet(*args, **kargs)
def neuronCount(self):
return sum([l.neuronCount() for l in self.layers ])
def depth(self):
return sum([l.depth() for l in self.layers ])
def FFNN(layers, last_lin = False, last_zono = False, **kargs):
starts = layers
ends = []
if last_lin:
ends = ([CorrelateAll(only_train=False)] if last_zono else []) + [PrintActivation(activation = "Affine"), Linear(layers[-1],**kargs)]
starts = layers[:-1]
return Seq(*([ Seq(PrintActivation(**kargs), Linear(s, **kargs), activation(**kargs)) for s in starts] + ends))
def Conv(*args, **kargs):
return Seq(Conv2D(*args, **kargs), activation(**kargs))
def ConvTranspose(*args, **kargs):
return Seq(ConvTranspose2D(*args, **kargs), activation(**kargs))
MP = MaxPool2D
def LeNet(conv_layers, ly = [], bias = True, normal=False, **kargs):
def transfer(tp):
if isinstance(tp, InferModule):
return tp
if isinstance(tp[0], str):
return MaxPool2D(*tp[1:])
return Conv(out_channels = tp[0], kernel_size = tp[1], stride = tp[-1] if len(tp) == 4 else 1, bias=bias, normal=normal, **kargs)
conv = [transfer(s) for s in conv_layers]
return Seq(*conv, FFNN(ly, **kargs, bias=bias)) if len(ly) > 0 else Seq(*conv)
def InvLeNet(ly, w, conv_layers, bias = True, normal=False, **kargs):
def transfer(tp):
return ConvTranspose(out_channels = tp[0], kernel_size = tp[1], stride = tp[2], padding = tp[3], out_padding = tp[4], bias=False, normal=normal)
return Seq(FFNN(ly, bias=bias), Unflatten2d(w), *[transfer(s) for s in conv_layers])
class FromByteImg(InferModule):
def init(self, in_shape, **kargs):
return in_shape
def forward(self, x, **kargs):
return x.to_dtype()/ 256.
def neuronCount(self):
return 0
class Skip(InferModule):
def init(self, in_shape, net1, net2, **kargs):
self.net1 = net1.infer(in_shape, **kargs)
self.net2 = net2.infer(in_shape, **kargs)
assert(net1.outShape[1:] == net2.outShape[1:])
return [ net1.outShape[0] + net2.outShape[0] ] + net1.outShape[1:]
def forward(self, x, **kargs):
r1 = self.net1(x, **kargs)
r2 = self.net2(x, **kargs)
return r1.cat(r2, dim=1)
def regularize(self, p):
return self.net1.regularize(p) + self.net2.regularize(p)
def clip_norm(self):
self.net1.clip_norm()
self.net2.clip_norm()
def remove_norm(self):
self.net1.remove_norm()
self.net2.remove_norm()
def neuronCount(self):
return self.net1.neuronCount() + self.net2.neuronCount()
def printNet(self, f):
print("SkipNet1", file=f)
self.net1.printNet(f)
print("SkipNet2", file=f)
self.net2.printNet(f)
print("SkipCat dim=1", file=f)
def showNet(self, t = ""):
print(t+"SkipNet1")
self.net1.showNet(" "+t)
print(t+"SkipNet2")
self.net2.showNet(" "+t)
print(t+"SkipCat dim=1")
class ParSum(InferModule):
def init(self, in_shape, net1, net2, **kargs):
self.net1 = net1.infer(in_shape, **kargs)
self.net2 = net2.infer(in_shape, **kargs)
assert(net1.outShape == net2.outShape)
return net1.outShape
def forward(self, x, **kargs):
r1 = self.net1(x, **kargs)
r2 = self.net2(x, **kargs)
return x.addPar(r1,r2)
def clip_norm(self):
self.net1.clip_norm()
self.net2.clip_norm()
def remove_norm(self):
self.net1.remove_norm()
self.net2.remove_norm()
def neuronCount(self):
return self.net1.neuronCount() + self.net2.neuronCount()
def depth(self):
return max(self.net1.depth(), self.net2.depth())
def printNet(self, f):
print("ParNet1", file=f)
self.net1.printNet(f)
print("ParNet2", file=f)
self.net2.printNet(f)
print("ParCat dim=1", file=f)
def showNet(self, t = ""):
print(t + "ParNet1")
self.net1.showNet(" "+t)
print(t + "ParNet2")
self.net2.showNet(" "+t)
print(t + "ParSum")
class ToZono(Identity):
def init(self, in_shape, customRelu = None, only_train = False, **kargs):
self.customRelu = customRelu
self.only_train = only_train
return in_shape
def forward(self, x, **kargs):
return self.abstract_forward(x, **kargs) if self.training or not self.only_train else x
def abstract_forward(self, x, **kargs):
return x.abstractApplyLeaf('hybrid_to_zono', customRelu = self.customRelu)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train))
class CorrelateAll(ToZono):
def abstract_forward(self, x, **kargs):
return x.abstractApplyLeaf('hybrid_to_zono',correlate=True, customRelu = self.customRelu)
class ToHZono(ToZono):
def abstract_forward(self, x, **kargs):
return x.abstractApplyLeaf('zono_to_hybrid',customRelu = self.customRelu)
class Concretize(ToZono):
def init(self, in_shape, only_train = True, **kargs):
self.only_train = only_train
return in_shape
def abstract_forward(self, x, **kargs):
return x.abstractApplyLeaf('concretize')
# stochastic correlation
class CorrRand(Concretize):
def init(self, in_shape, num_correlate, only_train = True, **kargs):
self.only_train = only_train
self.num_correlate = num_correlate
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("stochasticCorrelate", self.num_correlate)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " num_correlate="+ str(self.num_correlate))
class CorrMaxK(CorrRand):
def abstract_forward(self, x):
return x.abstractApplyLeaf("correlateMaxK", self.num_correlate)
class CorrMaxPool2D(Concretize):
def init(self,in_shape, kernel_size, only_train = True, max_type = ai.MaxTypes.head_beta, **kargs):
self.only_train = only_train
self.kernel_size = kernel_size
self.max_type = max_type
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("correlateMaxPool", kernel_size = self.kernel_size, stride = self.kernel_size, max_type = self.max_type)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " kernel_size="+ str(self.kernel_size) + " max_type=" +str(self.max_type))
class CorrMaxPool3D(Concretize):
def init(self,in_shape, kernel_size, only_train = True, max_type = ai.MaxTypes.only_beta, **kargs):
self.only_train = only_train
self.kernel_size = kernel_size
self.max_type = max_type
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("correlateMaxPool", kernel_size = self.kernel_size, stride = self.kernel_size, max_type = self.max_type, max_pool = F.max_pool3d)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " kernel_size="+ str(self.kernel_size) + " max_type=" +self.max_type)
class CorrFix(Concretize):
def init(self,in_shape, k, only_train = True, **kargs):
self.k = k
self.only_train = only_train
return in_shape
def abstract_forward(self, x):
sz = x.size()
"""
# for more control in the future
indxs_1 = torch.arange(start = 0, end = sz[1], step = math.ceil(sz[1] / self.dims[1]) )
indxs_2 = torch.arange(start = 0, end = sz[2], step = math.ceil(sz[2] / self.dims[2]) )
indxs_3 = torch.arange(start = 0, end = sz[3], step = math.ceil(sz[3] / self.dims[3]) )
indxs = torch.stack(torch.meshgrid((indxs_1,indxs_2,indxs_3)), dim=3).view(-1,3)
"""
szm = h.product(sz[1:])
indxs = torch.arange(start = 0, end = szm, step = math.ceil(szm / self.k))
indxs = indxs.unsqueeze(0).expand(sz[0], indxs.size()[0])
return x.abstractApplyLeaf("correlate", indxs)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " k="+ str(self.k))
class DecorrRand(Concretize):
def init(self, in_shape, num_decorrelate, only_train = True, **kargs):
self.only_train = only_train
self.num_decorrelate = num_decorrelate
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("stochasticDecorrelate", self.num_decorrelate)
class DecorrMin(Concretize):
def init(self, in_shape, num_decorrelate, only_train = True, num_to_keep = False, **kargs):
self.only_train = only_train
self.num_decorrelate = num_decorrelate
self.num_to_keep = num_to_keep
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("decorrelateMin", self.num_decorrelate, num_to_keep = self.num_to_keep)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " k="+ str(self.num_decorrelate) + " num_to_keep=" + str(self.num_to_keep) )
class DeepLoss(ToZono):
def init(self, in_shape, bw = 0.01, act = F.relu, **kargs): # weight must be between 0 and 1
self.only_train = True
self.bw = S.Const.initConst(bw)
self.act = act
return in_shape
def abstract_forward(self, x, **kargs):
if x.isPoint():
return x
return ai.TaggedDomain(x, self.MLoss(self, x))
class MLoss():
def __init__(self, obj, x):
self.obj = obj
self.x = x
def loss(self, a, *args, lr = 1, time = 0, **kargs):
bw = self.obj.bw.getVal(time = time)
pre_loss = a.loss(*args, time = time, **kargs, lr = lr * (1 - bw))
if bw <= 0.0:
return pre_loss
return (1 - bw) * pre_loss + bw * self.x.deep_loss(act = self.obj.act)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " bw="+ str(self.bw) + " act=" + str(self.act) )
class IdentLoss(DeepLoss):
def abstract_forward(self, x, **kargs):
return x
def SkipNet(net1, net2, ffnn, **kargs):
return Seq(Skip(net1,net2), FFNN(ffnn, **kargs))
def WideBlock(out_filters, downsample=False, k=3, bias=False, **kargs):
if not downsample:
k_first = 3
skip_stride = 1
k_skip = 1
else:
k_first = 4
skip_stride = 2
k_skip = 2
# conv2d280(input)
blockA = Conv2D(out_filters, kernel_size=k_skip, stride=skip_stride, padding=0, bias=bias, normal=True, **kargs)
# conv2d282(relu(conv2d278(input)))
blockB = Seq( Conv(out_filters, kernel_size = k_first, stride = skip_stride, padding = 1, bias=bias, normal=True, **kargs)
, Conv2D(out_filters, kernel_size = k, stride = 1, padding = 1, bias=bias, normal=True, **kargs))
return Seq(ParSum(blockA, blockB), activation(**kargs))
def BasicBlock(in_planes, planes, stride=1, bias = False, skip_net = False, **kargs):
block = Seq( Conv(planes, kernel_size = 3, stride = stride, padding = 1, bias=bias, normal=True, **kargs)
, Conv2D(planes, kernel_size = 3, stride = 1, padding = 1, bias=bias, normal=True, **kargs))
if stride != 1 or in_planes != planes:
block = ParSum(block, Conv2D(planes, kernel_size=1, stride=stride, bias=bias, normal=True, **kargs))
elif not skip_net:
block = ParSum(block, Identity())
return Seq(block, activation(**kargs))
# https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
def ResNet(blocksList, extra = [], bias = False, **kargs):
layers = []
in_planes = 64
planes = 64
stride = 0
for num_blocks in blocksList:
if stride < 2:
stride += 1
strides = [stride] + [1]*(num_blocks-1)
for stride in strides:
layers.append(BasicBlock(in_planes, planes, stride, bias = bias, **kargs))
in_planes = planes
planes *= 2
print("RESlayers: ", len(layers))
for e,l in extra:
layers[l] = Seq(layers[l], e)
return Seq(Conv(64, kernel_size=3, stride=1, padding = 1, bias=bias, normal=True, printShape=True),
*layers)
def DenseNet(growthRate, depth, reduction, num_classes, bottleneck = True):
def Bottleneck(growthRate):
interChannels = 4*growthRate
n = Seq( ReLU(),
Conv2D(interChannels, kernel_size=1, bias=True, ibp_init = True),
ReLU(),
Conv2D(growthRate, kernel_size=3, padding=1, bias=True, ibp_init = True)
)
return Skip(Identity(), n)
def SingleLayer(growthRate):
n = Seq( ReLU(),
Conv2D(growthRate, kernel_size=3, padding=1, bias=True, ibp_init = True))
return Skip(Identity(), n)
def Transition(nOutChannels):
return Seq( ReLU(),
Conv2D(nOutChannels, kernel_size = 1, bias = True, ibp_init = True),
AvgPool2D(kernel_size=2))
def make_dense(growthRate, nDenseBlocks, bottleneck):
return Seq(*[Bottleneck(growthRate) if bottleneck else SingleLayer(growthRate) for i in range(nDenseBlocks)])
nDenseBlocks = (depth-4) // 3
if bottleneck:
nDenseBlocks //= 2
nChannels = 2*growthRate
conv1 = Conv2D(nChannels, kernel_size=3, padding=1, bias=True, ibp_init = True)
dense1 = make_dense(growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks * growthRate
nOutChannels = int(math.floor(nChannels*reduction))
trans1 = Transition(nOutChannels)
nChannels = nOutChannels
dense2 = make_dense(growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks*growthRate
nOutChannels = int(math.floor(nChannels*reduction))
trans2 = Transition(nOutChannels)
nChannels = nOutChannels
dense3 = make_dense(growthRate, nDenseBlocks, bottleneck)
return Seq(conv1, dense1, trans1, dense2, trans2, dense3,
ReLU(),
AvgPool2D(kernel_size=8),
CorrelateAll(only_train=False, ignore_point = True),
Linear(num_classes, ibp_init = True))
|