|
from collections import defaultdict |
|
import json |
|
import os |
|
import random |
|
import logging |
|
import torch |
|
import numpy as np |
|
from transformers import BertTokenizer |
|
|
|
from models.joint_decoding.joint_decoder import EntRelJointDecoder |
|
from models.relation_decoding.relation_decoder import RelDecoder |
|
from utils.argparse import ConfigurationParer |
|
from utils.prediction_outputs import print_extractions_allennlp_format |
|
from inputs.vocabulary import Vocabulary |
|
from inputs.fields.token_field import TokenField |
|
from inputs.fields.raw_token_field import RawTokenField |
|
from inputs.fields.map_token_field import MapTokenField |
|
from inputs.instance import Instance |
|
from inputs.datasets.dataset import Dataset |
|
from inputs.dataset_readers.oie_reader_for_ent_rel_decoding import OIE4ReaderForEntRelDecoding |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def step(cfg, ent_model, rel_model, batch_inputs, main_vocab, device): |
|
batch_inputs["tokens"] = torch.LongTensor(batch_inputs["tokens"]) |
|
batch_inputs["entity_label_matrix"] = torch.LongTensor(batch_inputs["entity_label_matrix"]) |
|
batch_inputs["entity_label_matrix_mask"] = torch.BoolTensor(batch_inputs["entity_label_matrix_mask"]) |
|
batch_inputs["relation_label_matrix"] = torch.LongTensor(batch_inputs["relation_label_matrix"]) |
|
batch_inputs["relation_label_matrix_mask"] = torch.BoolTensor(batch_inputs["relation_label_matrix_mask"]) |
|
batch_inputs["wordpiece_tokens"] = torch.LongTensor(batch_inputs["wordpiece_tokens"]) |
|
batch_inputs["wordpiece_tokens_index"] = torch.LongTensor(batch_inputs["wordpiece_tokens_index"]) |
|
batch_inputs["wordpiece_segment_ids"] = torch.LongTensor(batch_inputs["wordpiece_segment_ids"]) |
|
|
|
batch_inputs["joint_label_matrix"] = torch.LongTensor(batch_inputs["joint_label_matrix"]) |
|
batch_inputs["joint_label_matrix_mask"] = torch.BoolTensor(batch_inputs["joint_label_matrix_mask"]) |
|
|
|
if device > -1: |
|
batch_inputs["tokens"] = batch_inputs["tokens"].cuda(device=device, non_blocking=True) |
|
batch_inputs["entity_label_matrix"] = batch_inputs["entity_label_matrix"].cuda(device=device, non_blocking=True) |
|
batch_inputs["entity_label_matrix_mask"] = batch_inputs["entity_label_matrix_mask"].cuda(device=device, non_blocking=True) |
|
batch_inputs["relation_label_matrix"] = batch_inputs["relation_label_matrix"].cuda(device=device, non_blocking=True) |
|
batch_inputs["relation_label_matrix_mask"] = batch_inputs["relation_label_matrix_mask"].cuda(device=device, non_blocking=True) |
|
batch_inputs["wordpiece_tokens"] = batch_inputs["wordpiece_tokens"].cuda(device=device, non_blocking=True) |
|
batch_inputs["wordpiece_tokens_index"] = batch_inputs["wordpiece_tokens_index"].cuda(device=device, non_blocking=True) |
|
batch_inputs["wordpiece_segment_ids"] = batch_inputs["wordpiece_segment_ids"].cuda(device=device, non_blocking=True) |
|
|
|
ent_outputs = ent_model(batch_inputs, rel_model, main_vocab) |
|
batch_outputs = [] |
|
if not ent_model.training and not rel_model.training: |
|
|
|
for sent_idx in range(len(batch_inputs['tokens_lens'])): |
|
sent_output = dict() |
|
sent_output['tokens'] = batch_inputs['tokens'][sent_idx].cpu().numpy() |
|
sent_output['span2ent'] = batch_inputs['span2ent'][sent_idx] |
|
sent_output['span2rel'] = batch_inputs['span2rel'][sent_idx] |
|
sent_output['seq_len'] = batch_inputs['tokens_lens'][sent_idx] |
|
sent_output['entity_label_matrix'] = batch_inputs['entity_label_matrix'][sent_idx].cpu().numpy() |
|
sent_output['entity_label_preds'] = ent_outputs['entity_label_preds'][sent_idx].cpu().numpy() |
|
sent_output['separate_positions'] = batch_inputs['separate_positions'][sent_idx] |
|
sent_output['all_separate_position_preds'] = ent_outputs['all_separate_position_preds'][sent_idx] |
|
sent_output['all_ent_preds'] = ent_outputs['all_ent_preds'][sent_idx] |
|
sent_output['all_rel_preds'] = ent_outputs['all_rel_preds'][sent_idx] |
|
batch_outputs.append(sent_output) |
|
return batch_outputs |
|
|
|
return ent_outputs['element_loss'], ent_outputs['symmetric_loss'] |
|
|
|
|
|
def test(cfg, dataset, ent_model, rel_model): |
|
logger.info("Testing starting...") |
|
ent_model.zero_grad() |
|
rel_model.zero_grad() |
|
|
|
all_outputs = [] |
|
for idx, batch in dataset.get_batch('test', cfg.test_batch_size, None): |
|
print("Processed batch {}".format(idx)) |
|
ent_model.eval() |
|
rel_model.eval() |
|
with torch.no_grad(): |
|
batch_outputs = step(cfg, ent_model, rel_model, batch, dataset.vocab, cfg.device) |
|
all_outputs.extend(batch_outputs) |
|
|
|
test_output_file = os.path.join(cfg.save_dir, "output_extractions.txt") |
|
print_extractions_allennlp_format(cfg, all_outputs, test_output_file, dataset.vocab) |
|
print("Extraction process completed") |
|
print('Saved extractions to "{}"'.format(test_output_file)) |
|
|
|
|
|
def main(): |
|
|
|
parser = ConfigurationParer() |
|
parser.add_save_cfgs() |
|
parser.add_data_cfgs() |
|
parser.add_model_cfgs() |
|
parser.add_optimizer_cfgs() |
|
parser.add_run_cfgs() |
|
|
|
cfg = parser.parse_args() |
|
logger.info(parser.format_values()) |
|
|
|
|
|
random.seed(cfg.seed) |
|
torch.manual_seed(cfg.seed) |
|
np.random.seed(cfg.seed) |
|
if cfg.device > -1 and not torch.cuda.is_available(): |
|
logger.error('config conflicts: no gpu available, use cpu for training.') |
|
cfg.device = -1 |
|
if cfg.device > -1: |
|
torch.cuda.manual_seed(cfg.seed) |
|
|
|
|
|
tokens = TokenField("tokens", "tokens", "tokens", True) |
|
separate_positions = RawTokenField("separate_positions", "separate_positions") |
|
span2ent = MapTokenField("span2ent", "ent_rel_id", "span2ent", False) |
|
span2rel = MapTokenField("span2rel", "ent_rel_id", "span2rel", False) |
|
entity_label_matrix = RawTokenField("entity_label_matrix", "entity_label_matrix") |
|
relation_label_matrix = RawTokenField("relation_label_matrix", "relation_label_matrix") |
|
joint_label_matrix = RawTokenField("joint_label_matrix", "joint_label_matrix") |
|
wordpiece_tokens = TokenField("wordpiece_tokens", "wordpiece", "wordpiece_tokens", False) |
|
wordpiece_tokens_index = RawTokenField("wordpiece_tokens_index", "wordpiece_tokens_index") |
|
wordpiece_segment_ids = RawTokenField("wordpiece_segment_ids", "wordpiece_segment_ids") |
|
fields = [tokens, separate_positions, span2ent, span2rel, entity_label_matrix, relation_label_matrix, joint_label_matrix] |
|
|
|
if cfg.embedding_model in ['bert', 'pretrained']: |
|
fields.extend([wordpiece_tokens, wordpiece_tokens_index, wordpiece_segment_ids]) |
|
|
|
|
|
counter = defaultdict(lambda: defaultdict(int)) |
|
vocab_ent = Vocabulary() |
|
|
|
|
|
test_instance = Instance(fields) |
|
|
|
|
|
max_len = {'tokens': cfg.max_sent_len, 'wordpiece_tokens': cfg.max_wordpiece_len} |
|
ent_rel_file = json.load(open(cfg.ent_rel_file, 'r', encoding='utf-8')) |
|
rel_file = json.load(open(cfg.rel_file, 'r', encoding='utf-8')) |
|
pretrained_vocab = {'ent_rel_id': ent_rel_file["id"]} |
|
if cfg.embedding_model == 'bert': |
|
tokenizer = BertTokenizer.from_pretrained(cfg.bert_model_name) |
|
logger.info("Load bert tokenizer successfully.") |
|
pretrained_vocab['wordpiece'] = tokenizer.get_vocab() |
|
elif cfg.embedding_model == 'pretrained': |
|
tokenizer = BertTokenizer.from_pretrained(cfg.pretrained_model_name) |
|
logger.info("Load {} tokenizer successfully.".format(cfg.pretrained_model_name)) |
|
pretrained_vocab['wordpiece'] = tokenizer.get_vocab() |
|
oie_test_reader = OIE4ReaderForEntRelDecoding(cfg.test_file, False, max_len) |
|
|
|
|
|
oie_dataset = Dataset("OIE4") |
|
oie_dataset.add_instance("test", test_instance, oie_test_reader, is_count=True, is_train=False) |
|
|
|
min_count = {"tokens": 1} |
|
no_pad_namespace = ["ent_rel_id"] |
|
no_unk_namespace = ["ent_rel_id"] |
|
contain_pad_namespace = {"wordpiece": tokenizer.pad_token} |
|
contain_unk_namespace = {"wordpiece": tokenizer.unk_token} |
|
oie_dataset.build_dataset(vocab=vocab_ent, |
|
counter=counter, |
|
min_count=min_count, |
|
pretrained_vocab=pretrained_vocab, |
|
no_pad_namespace=no_pad_namespace, |
|
no_unk_namespace=no_unk_namespace, |
|
contain_pad_namespace=contain_pad_namespace, |
|
contain_unk_namespace=contain_unk_namespace) |
|
wo_padding_namespace = ["separate_positions", "span2ent", "span2rel"] |
|
oie_dataset.set_wo_padding_namespace(wo_padding_namespace=wo_padding_namespace) |
|
|
|
vocab_ent = Vocabulary.load(cfg.constituent_vocab) |
|
vocab_rel = Vocabulary.load(cfg.relation_vocab) |
|
|
|
ent_model = EntRelJointDecoder(cfg=cfg, vocab=vocab_ent, ent_rel_file=ent_rel_file, rel_file=rel_file) |
|
rel_model = RelDecoder(cfg=cfg, vocab=vocab_rel, ent_rel_file=rel_file) |
|
|
|
|
|
if os.path.exists(cfg.constituent_model_path): |
|
state_dict = torch.load(open(cfg.constituent_model_path, 'rb'), map_location=lambda storage, loc: storage) |
|
ent_model.load_state_dict(state_dict) |
|
print("constituent model loaded") |
|
else: |
|
raise FileNotFoundError('Attempted to load the constituent extaction model "{}" but found no model by that name in the path specified.'.format(cfg.constituent_model_path)) |
|
if os.path.exists(cfg.relation_model_path): |
|
state_dict = torch.load(open(cfg.relation_model_path, 'rb'), map_location=lambda storage, loc: storage) |
|
rel_model.load_state_dict(state_dict) |
|
print("linking model loaded") |
|
else: |
|
raise FileNotFoundError('Attempted to load the constituent linking model "{}" but found no model by that name in the path specified.'.format(cfg.relation_model_path)) |
|
logger.info("Loading best training models successfully for testing.") |
|
|
|
if cfg.device > -1: |
|
ent_model.cuda(device=cfg.device) |
|
rel_model.cuda(device=cfg.device) |
|
|
|
test(cfg, oie_dataset, ent_model, rel_model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|