File size: 10,332 Bytes
4fb0bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from collections import defaultdict
import json
import os
import random
import logging
import torch
import numpy as np
from transformers import BertTokenizer

from models.joint_decoding.joint_decoder import EntRelJointDecoder
from models.relation_decoding.relation_decoder import RelDecoder
from utils.argparse import ConfigurationParer
from utils.prediction_outputs import print_extractions_allennlp_format
from inputs.vocabulary import Vocabulary
from inputs.fields.token_field import TokenField
from inputs.fields.raw_token_field import RawTokenField
from inputs.fields.map_token_field import MapTokenField
from inputs.instance import Instance
from inputs.datasets.dataset import Dataset
from inputs.dataset_readers.oie_reader_for_ent_rel_decoding import OIE4ReaderForEntRelDecoding

logger = logging.getLogger(__name__)


def step(cfg, ent_model, rel_model, batch_inputs, main_vocab, device):
    batch_inputs["tokens"] = torch.LongTensor(batch_inputs["tokens"])
    batch_inputs["entity_label_matrix"] = torch.LongTensor(batch_inputs["entity_label_matrix"])
    batch_inputs["entity_label_matrix_mask"] = torch.BoolTensor(batch_inputs["entity_label_matrix_mask"])
    batch_inputs["relation_label_matrix"] = torch.LongTensor(batch_inputs["relation_label_matrix"])
    batch_inputs["relation_label_matrix_mask"] = torch.BoolTensor(batch_inputs["relation_label_matrix_mask"])
    batch_inputs["wordpiece_tokens"] = torch.LongTensor(batch_inputs["wordpiece_tokens"])
    batch_inputs["wordpiece_tokens_index"] = torch.LongTensor(batch_inputs["wordpiece_tokens_index"])
    batch_inputs["wordpiece_segment_ids"] = torch.LongTensor(batch_inputs["wordpiece_segment_ids"])

    batch_inputs["joint_label_matrix"] = torch.LongTensor(batch_inputs["joint_label_matrix"])
    batch_inputs["joint_label_matrix_mask"] = torch.BoolTensor(batch_inputs["joint_label_matrix_mask"])

    if device > -1:
        batch_inputs["tokens"] = batch_inputs["tokens"].cuda(device=device, non_blocking=True)
        batch_inputs["entity_label_matrix"] = batch_inputs["entity_label_matrix"].cuda(device=device, non_blocking=True)
        batch_inputs["entity_label_matrix_mask"] = batch_inputs["entity_label_matrix_mask"].cuda(device=device, non_blocking=True)
        batch_inputs["relation_label_matrix"] = batch_inputs["relation_label_matrix"].cuda(device=device, non_blocking=True)
        batch_inputs["relation_label_matrix_mask"] = batch_inputs["relation_label_matrix_mask"].cuda(device=device, non_blocking=True)
        batch_inputs["wordpiece_tokens"] = batch_inputs["wordpiece_tokens"].cuda(device=device, non_blocking=True)
        batch_inputs["wordpiece_tokens_index"] = batch_inputs["wordpiece_tokens_index"].cuda(device=device, non_blocking=True)
        batch_inputs["wordpiece_segment_ids"] = batch_inputs["wordpiece_segment_ids"].cuda(device=device, non_blocking=True)

    ent_outputs = ent_model(batch_inputs, rel_model, main_vocab)
    batch_outputs = []
    if not ent_model.training and not rel_model.training:
        # entities
        for sent_idx in range(len(batch_inputs['tokens_lens'])):
            sent_output = dict()
            sent_output['tokens'] = batch_inputs['tokens'][sent_idx].cpu().numpy()
            sent_output['span2ent'] = batch_inputs['span2ent'][sent_idx]
            sent_output['span2rel'] = batch_inputs['span2rel'][sent_idx]
            sent_output['seq_len'] = batch_inputs['tokens_lens'][sent_idx]
            sent_output['entity_label_matrix'] = batch_inputs['entity_label_matrix'][sent_idx].cpu().numpy()
            sent_output['entity_label_preds'] = ent_outputs['entity_label_preds'][sent_idx].cpu().numpy()
            sent_output['separate_positions'] = batch_inputs['separate_positions'][sent_idx]
            sent_output['all_separate_position_preds'] = ent_outputs['all_separate_position_preds'][sent_idx]
            sent_output['all_ent_preds'] = ent_outputs['all_ent_preds'][sent_idx]
            sent_output['all_rel_preds'] = ent_outputs['all_rel_preds'][sent_idx]
            batch_outputs.append(sent_output)
        return batch_outputs

    return ent_outputs['element_loss'], ent_outputs['symmetric_loss']


def test(cfg, dataset, ent_model, rel_model):
    logger.info("Testing starting...")
    ent_model.zero_grad()
    rel_model.zero_grad()

    all_outputs = []
    for idx, batch in dataset.get_batch('test', cfg.test_batch_size, None):
        print("Processed batch {}".format(idx))
        ent_model.eval()
        rel_model.eval()
        with torch.no_grad():
            batch_outputs = step(cfg, ent_model, rel_model, batch, dataset.vocab, cfg.device)
        all_outputs.extend(batch_outputs)

    test_output_file = os.path.join(cfg.save_dir, "output_extractions.txt")
    print_extractions_allennlp_format(cfg, all_outputs, test_output_file, dataset.vocab)
    print("Extraction process completed")
    print('Saved extractions to "{}"'.format(test_output_file))


def main():
    # config settings
    parser = ConfigurationParer()
    parser.add_save_cfgs()
    parser.add_data_cfgs()
    parser.add_model_cfgs()
    parser.add_optimizer_cfgs()
    parser.add_run_cfgs()

    cfg = parser.parse_args()
    logger.info(parser.format_values())

    # set random seed
    random.seed(cfg.seed)
    torch.manual_seed(cfg.seed)
    np.random.seed(cfg.seed)
    if cfg.device > -1 and not torch.cuda.is_available():
        logger.error('config conflicts: no gpu available, use cpu for training.')
        cfg.device = -1
    if cfg.device > -1:
        torch.cuda.manual_seed(cfg.seed)

    # define fields
    tokens = TokenField("tokens", "tokens", "tokens", True)
    separate_positions = RawTokenField("separate_positions", "separate_positions")
    span2ent = MapTokenField("span2ent", "ent_rel_id", "span2ent", False)
    span2rel = MapTokenField("span2rel", "ent_rel_id", "span2rel", False)
    entity_label_matrix = RawTokenField("entity_label_matrix", "entity_label_matrix")
    relation_label_matrix = RawTokenField("relation_label_matrix", "relation_label_matrix")
    joint_label_matrix = RawTokenField("joint_label_matrix", "joint_label_matrix")
    wordpiece_tokens = TokenField("wordpiece_tokens", "wordpiece", "wordpiece_tokens", False)
    wordpiece_tokens_index = RawTokenField("wordpiece_tokens_index", "wordpiece_tokens_index")
    wordpiece_segment_ids = RawTokenField("wordpiece_segment_ids", "wordpiece_segment_ids")
    fields = [tokens, separate_positions, span2ent, span2rel, entity_label_matrix, relation_label_matrix, joint_label_matrix]

    if cfg.embedding_model in ['bert', 'pretrained']:
        fields.extend([wordpiece_tokens, wordpiece_tokens_index, wordpiece_segment_ids])

    # define counter and vocabulary
    counter = defaultdict(lambda: defaultdict(int))
    vocab_ent = Vocabulary()

    # define instance (data sets)
    test_instance = Instance(fields)

    # define dataset reader
    max_len = {'tokens': cfg.max_sent_len, 'wordpiece_tokens': cfg.max_wordpiece_len}
    ent_rel_file = json.load(open(cfg.ent_rel_file, 'r', encoding='utf-8'))
    rel_file = json.load(open(cfg.rel_file, 'r', encoding='utf-8'))
    pretrained_vocab = {'ent_rel_id': ent_rel_file["id"]}
    if cfg.embedding_model == 'bert':
        tokenizer = BertTokenizer.from_pretrained(cfg.bert_model_name)
        logger.info("Load bert tokenizer successfully.")
        pretrained_vocab['wordpiece'] = tokenizer.get_vocab()
    elif cfg.embedding_model == 'pretrained':
        tokenizer = BertTokenizer.from_pretrained(cfg.pretrained_model_name)
        logger.info("Load {} tokenizer successfully.".format(cfg.pretrained_model_name))
        pretrained_vocab['wordpiece'] = tokenizer.get_vocab()
    oie_test_reader = OIE4ReaderForEntRelDecoding(cfg.test_file, False, max_len)

    # define dataset
    oie_dataset = Dataset("OIE4")
    oie_dataset.add_instance("test", test_instance, oie_test_reader, is_count=True, is_train=False)

    min_count = {"tokens": 1}
    no_pad_namespace = ["ent_rel_id"]
    no_unk_namespace = ["ent_rel_id"]
    contain_pad_namespace = {"wordpiece": tokenizer.pad_token}
    contain_unk_namespace = {"wordpiece": tokenizer.unk_token}
    oie_dataset.build_dataset(vocab=vocab_ent,
                              counter=counter,
                              min_count=min_count,
                              pretrained_vocab=pretrained_vocab,
                              no_pad_namespace=no_pad_namespace,
                              no_unk_namespace=no_unk_namespace,
                              contain_pad_namespace=contain_pad_namespace,
                              contain_unk_namespace=contain_unk_namespace)
    wo_padding_namespace = ["separate_positions", "span2ent", "span2rel"]
    oie_dataset.set_wo_padding_namespace(wo_padding_namespace=wo_padding_namespace)

    vocab_ent = Vocabulary.load(cfg.constituent_vocab)
    vocab_rel = Vocabulary.load(cfg.relation_vocab)
    # separate models for constituent generation and linking
    ent_model = EntRelJointDecoder(cfg=cfg, vocab=vocab_ent, ent_rel_file=ent_rel_file, rel_file=rel_file)
    rel_model = RelDecoder(cfg=cfg, vocab=vocab_rel, ent_rel_file=rel_file)

    # main bert-based model
    if os.path.exists(cfg.constituent_model_path):
        state_dict = torch.load(open(cfg.constituent_model_path, 'rb'), map_location=lambda storage, loc: storage)
        ent_model.load_state_dict(state_dict)
        print("constituent model loaded")
    else:
        raise FileNotFoundError('Attempted to load the constituent extaction model "{}" but found no model by that name in the path specified.'.format(cfg.constituent_model_path))
    if os.path.exists(cfg.relation_model_path):
        state_dict = torch.load(open(cfg.relation_model_path, 'rb'), map_location=lambda storage, loc: storage)
        rel_model.load_state_dict(state_dict)
        print("linking model loaded")
    else:
        raise FileNotFoundError('Attempted to load the constituent linking model "{}" but found no model by that name in the path specified.'.format(cfg.relation_model_path))
    logger.info("Loading best training models successfully for testing.")

    if cfg.device > -1:
        ent_model.cuda(device=cfg.device)
        rel_model.cuda(device=cfg.device)

    test(cfg, oie_dataset, ent_model, rel_model)


if __name__ == '__main__':
    main()