File size: 10,332 Bytes
4fb0bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from collections import defaultdict
import json
import os
import random
import logging
import torch
import numpy as np
from transformers import BertTokenizer
from models.joint_decoding.joint_decoder import EntRelJointDecoder
from models.relation_decoding.relation_decoder import RelDecoder
from utils.argparse import ConfigurationParer
from utils.prediction_outputs import print_extractions_allennlp_format
from inputs.vocabulary import Vocabulary
from inputs.fields.token_field import TokenField
from inputs.fields.raw_token_field import RawTokenField
from inputs.fields.map_token_field import MapTokenField
from inputs.instance import Instance
from inputs.datasets.dataset import Dataset
from inputs.dataset_readers.oie_reader_for_ent_rel_decoding import OIE4ReaderForEntRelDecoding
logger = logging.getLogger(__name__)
def step(cfg, ent_model, rel_model, batch_inputs, main_vocab, device):
batch_inputs["tokens"] = torch.LongTensor(batch_inputs["tokens"])
batch_inputs["entity_label_matrix"] = torch.LongTensor(batch_inputs["entity_label_matrix"])
batch_inputs["entity_label_matrix_mask"] = torch.BoolTensor(batch_inputs["entity_label_matrix_mask"])
batch_inputs["relation_label_matrix"] = torch.LongTensor(batch_inputs["relation_label_matrix"])
batch_inputs["relation_label_matrix_mask"] = torch.BoolTensor(batch_inputs["relation_label_matrix_mask"])
batch_inputs["wordpiece_tokens"] = torch.LongTensor(batch_inputs["wordpiece_tokens"])
batch_inputs["wordpiece_tokens_index"] = torch.LongTensor(batch_inputs["wordpiece_tokens_index"])
batch_inputs["wordpiece_segment_ids"] = torch.LongTensor(batch_inputs["wordpiece_segment_ids"])
batch_inputs["joint_label_matrix"] = torch.LongTensor(batch_inputs["joint_label_matrix"])
batch_inputs["joint_label_matrix_mask"] = torch.BoolTensor(batch_inputs["joint_label_matrix_mask"])
if device > -1:
batch_inputs["tokens"] = batch_inputs["tokens"].cuda(device=device, non_blocking=True)
batch_inputs["entity_label_matrix"] = batch_inputs["entity_label_matrix"].cuda(device=device, non_blocking=True)
batch_inputs["entity_label_matrix_mask"] = batch_inputs["entity_label_matrix_mask"].cuda(device=device, non_blocking=True)
batch_inputs["relation_label_matrix"] = batch_inputs["relation_label_matrix"].cuda(device=device, non_blocking=True)
batch_inputs["relation_label_matrix_mask"] = batch_inputs["relation_label_matrix_mask"].cuda(device=device, non_blocking=True)
batch_inputs["wordpiece_tokens"] = batch_inputs["wordpiece_tokens"].cuda(device=device, non_blocking=True)
batch_inputs["wordpiece_tokens_index"] = batch_inputs["wordpiece_tokens_index"].cuda(device=device, non_blocking=True)
batch_inputs["wordpiece_segment_ids"] = batch_inputs["wordpiece_segment_ids"].cuda(device=device, non_blocking=True)
ent_outputs = ent_model(batch_inputs, rel_model, main_vocab)
batch_outputs = []
if not ent_model.training and not rel_model.training:
# entities
for sent_idx in range(len(batch_inputs['tokens_lens'])):
sent_output = dict()
sent_output['tokens'] = batch_inputs['tokens'][sent_idx].cpu().numpy()
sent_output['span2ent'] = batch_inputs['span2ent'][sent_idx]
sent_output['span2rel'] = batch_inputs['span2rel'][sent_idx]
sent_output['seq_len'] = batch_inputs['tokens_lens'][sent_idx]
sent_output['entity_label_matrix'] = batch_inputs['entity_label_matrix'][sent_idx].cpu().numpy()
sent_output['entity_label_preds'] = ent_outputs['entity_label_preds'][sent_idx].cpu().numpy()
sent_output['separate_positions'] = batch_inputs['separate_positions'][sent_idx]
sent_output['all_separate_position_preds'] = ent_outputs['all_separate_position_preds'][sent_idx]
sent_output['all_ent_preds'] = ent_outputs['all_ent_preds'][sent_idx]
sent_output['all_rel_preds'] = ent_outputs['all_rel_preds'][sent_idx]
batch_outputs.append(sent_output)
return batch_outputs
return ent_outputs['element_loss'], ent_outputs['symmetric_loss']
def test(cfg, dataset, ent_model, rel_model):
logger.info("Testing starting...")
ent_model.zero_grad()
rel_model.zero_grad()
all_outputs = []
for idx, batch in dataset.get_batch('test', cfg.test_batch_size, None):
print("Processed batch {}".format(idx))
ent_model.eval()
rel_model.eval()
with torch.no_grad():
batch_outputs = step(cfg, ent_model, rel_model, batch, dataset.vocab, cfg.device)
all_outputs.extend(batch_outputs)
test_output_file = os.path.join(cfg.save_dir, "output_extractions.txt")
print_extractions_allennlp_format(cfg, all_outputs, test_output_file, dataset.vocab)
print("Extraction process completed")
print('Saved extractions to "{}"'.format(test_output_file))
def main():
# config settings
parser = ConfigurationParer()
parser.add_save_cfgs()
parser.add_data_cfgs()
parser.add_model_cfgs()
parser.add_optimizer_cfgs()
parser.add_run_cfgs()
cfg = parser.parse_args()
logger.info(parser.format_values())
# set random seed
random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
if cfg.device > -1 and not torch.cuda.is_available():
logger.error('config conflicts: no gpu available, use cpu for training.')
cfg.device = -1
if cfg.device > -1:
torch.cuda.manual_seed(cfg.seed)
# define fields
tokens = TokenField("tokens", "tokens", "tokens", True)
separate_positions = RawTokenField("separate_positions", "separate_positions")
span2ent = MapTokenField("span2ent", "ent_rel_id", "span2ent", False)
span2rel = MapTokenField("span2rel", "ent_rel_id", "span2rel", False)
entity_label_matrix = RawTokenField("entity_label_matrix", "entity_label_matrix")
relation_label_matrix = RawTokenField("relation_label_matrix", "relation_label_matrix")
joint_label_matrix = RawTokenField("joint_label_matrix", "joint_label_matrix")
wordpiece_tokens = TokenField("wordpiece_tokens", "wordpiece", "wordpiece_tokens", False)
wordpiece_tokens_index = RawTokenField("wordpiece_tokens_index", "wordpiece_tokens_index")
wordpiece_segment_ids = RawTokenField("wordpiece_segment_ids", "wordpiece_segment_ids")
fields = [tokens, separate_positions, span2ent, span2rel, entity_label_matrix, relation_label_matrix, joint_label_matrix]
if cfg.embedding_model in ['bert', 'pretrained']:
fields.extend([wordpiece_tokens, wordpiece_tokens_index, wordpiece_segment_ids])
# define counter and vocabulary
counter = defaultdict(lambda: defaultdict(int))
vocab_ent = Vocabulary()
# define instance (data sets)
test_instance = Instance(fields)
# define dataset reader
max_len = {'tokens': cfg.max_sent_len, 'wordpiece_tokens': cfg.max_wordpiece_len}
ent_rel_file = json.load(open(cfg.ent_rel_file, 'r', encoding='utf-8'))
rel_file = json.load(open(cfg.rel_file, 'r', encoding='utf-8'))
pretrained_vocab = {'ent_rel_id': ent_rel_file["id"]}
if cfg.embedding_model == 'bert':
tokenizer = BertTokenizer.from_pretrained(cfg.bert_model_name)
logger.info("Load bert tokenizer successfully.")
pretrained_vocab['wordpiece'] = tokenizer.get_vocab()
elif cfg.embedding_model == 'pretrained':
tokenizer = BertTokenizer.from_pretrained(cfg.pretrained_model_name)
logger.info("Load {} tokenizer successfully.".format(cfg.pretrained_model_name))
pretrained_vocab['wordpiece'] = tokenizer.get_vocab()
oie_test_reader = OIE4ReaderForEntRelDecoding(cfg.test_file, False, max_len)
# define dataset
oie_dataset = Dataset("OIE4")
oie_dataset.add_instance("test", test_instance, oie_test_reader, is_count=True, is_train=False)
min_count = {"tokens": 1}
no_pad_namespace = ["ent_rel_id"]
no_unk_namespace = ["ent_rel_id"]
contain_pad_namespace = {"wordpiece": tokenizer.pad_token}
contain_unk_namespace = {"wordpiece": tokenizer.unk_token}
oie_dataset.build_dataset(vocab=vocab_ent,
counter=counter,
min_count=min_count,
pretrained_vocab=pretrained_vocab,
no_pad_namespace=no_pad_namespace,
no_unk_namespace=no_unk_namespace,
contain_pad_namespace=contain_pad_namespace,
contain_unk_namespace=contain_unk_namespace)
wo_padding_namespace = ["separate_positions", "span2ent", "span2rel"]
oie_dataset.set_wo_padding_namespace(wo_padding_namespace=wo_padding_namespace)
vocab_ent = Vocabulary.load(cfg.constituent_vocab)
vocab_rel = Vocabulary.load(cfg.relation_vocab)
# separate models for constituent generation and linking
ent_model = EntRelJointDecoder(cfg=cfg, vocab=vocab_ent, ent_rel_file=ent_rel_file, rel_file=rel_file)
rel_model = RelDecoder(cfg=cfg, vocab=vocab_rel, ent_rel_file=rel_file)
# main bert-based model
if os.path.exists(cfg.constituent_model_path):
state_dict = torch.load(open(cfg.constituent_model_path, 'rb'), map_location=lambda storage, loc: storage)
ent_model.load_state_dict(state_dict)
print("constituent model loaded")
else:
raise FileNotFoundError('Attempted to load the constituent extaction model "{}" but found no model by that name in the path specified.'.format(cfg.constituent_model_path))
if os.path.exists(cfg.relation_model_path):
state_dict = torch.load(open(cfg.relation_model_path, 'rb'), map_location=lambda storage, loc: storage)
rel_model.load_state_dict(state_dict)
print("linking model loaded")
else:
raise FileNotFoundError('Attempted to load the constituent linking model "{}" but found no model by that name in the path specified.'.format(cfg.relation_model_path))
logger.info("Loading best training models successfully for testing.")
if cfg.device > -1:
ent_model.cuda(device=cfg.device)
rel_model.cuda(device=cfg.device)
test(cfg, oie_dataset, ent_model, rel_model)
if __name__ == '__main__':
main()
|