metadata
license: cc-by-nc-4.0
datasets:
- jondurbin/bagel-v0.3
base_model: decapod-research/Antares-11b-v1
model-index:
- name: Antares-11b-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.03
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.54
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.19
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.17
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.19
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.5
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decapoda-research/Antares-11b-v2
name: Open LLM Leaderboard
Fine-tune of Upstage AI's SOLAR-10.7B-Instruct-v1.0 model, using the OpenHermes, Platypus, and Capybara datasets. Additionally fine-tuned on Jon Durbin's Bagel v0.3, plus a few unreleased datasets.
Fine-tuned on 8x4090s for 1.25 epochs.
Model Sources [optional]
- Repository: TBD
- Demo: TBD
Bias, Risks, and Limitations
This fine-tune has had zero alignment, safety data, or anything else shoved down it's throat.
Training Details
Training Data
See the sidebar for links to the relevant datasets.
Training Procedure
Trained using QLORA via the Axolotl tool.
Evaluation
TBD
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.0
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 70.94 |
AI2 Reasoning Challenge (25-Shot) | 69.03 |
HellaSwag (10-Shot) | 87.54 |
MMLU (5-Shot) | 66.19 |
TruthfulQA (0-shot) | 59.17 |
Winogrande (5-shot) | 83.19 |
GSM8k (5-shot) | 60.50 |