Edit model card

Model card for BioLingual

Model card for BioLingual: Transferable Models for bioacoustics with Human Language Supervision

An audio-text model for bioacoustics based on contrastive language-audio pretraining.

Usage

You can use this model for bioacoustic zero shot audio classification, or for fine-tuning on bioacoustic tasks.

Uses

Perform zero-shot audio classification

Using pipeline

from datasets import load_dataset
from transformers import pipeline

dataset = load_dataset("ashraq/esc50")
audio = dataset["train"]["audio"][-1]["array"]

audio_classifier = pipeline(task="zero-shot-audio-classification", model="davidrrobinson/BioLingual")
output = audio_classifier(audio, candidate_labels=["Sound of a sperm whale", "Sound of a sea lion"])
print(output)
>>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}]

Run the model:

You can also get the audio and text embeddings using ClapModel

Run the model on CPU:

from datasets import load_dataset
from transformers import ClapModel, ClapProcessor

librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[0]

model = ClapModel.from_pretrained("laion/clap-htsat-unfused")
processor = ClapProcessor.from_pretrained("laion/clap-htsat-unfused")

inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt")
audio_embed = model.get_audio_features(**inputs)

Run the model on GPU:

from datasets import load_dataset
from transformers import ClapModel, ClapProcessor

librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[0]

model = ClapModel.from_pretrained("laion/clap-htsat-unfused").to(0)
processor = ClapProcessor.from_pretrained("laion/clap-htsat-unfused")

inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0)
audio_embed = model.get_audio_features(**inputs)
Downloads last month
2,106
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train davidrrobinson/BioLingual