racism / README.md
davidmasip's picture
Better examples
fa50338
|
raw
history blame
856 Bytes
metadata
license: cc
language: es
widget:
  - text: Me cae muy bien.
    example_title: Non-racist example
  - text: Unos menas agreden a una mujer.
    example_title: Racist example

Model to predict whether a given text is racist or not:

  • LABEL_0 output indicates non-racist text
  • LABEL_1 output indicates racist text

Usage:

from transformers import pipeline

RACISM_MODEL = "davidmasip/racism"
racism_analysis_pipe = pipeline("text-classification",
                                model=RACISM_MODEL, tokenizer=RACISM_MODEL)

results = racism_analysis_pipe("Unos menas agreden a una mujer.")


def clean_labels(results):
    for result in results:
        label = "Non-racist" if results["label"] == "LABEL_0" else "Racist"
        result["label"] = label


clean_labels(results)
print(results)