davidggphy's picture
End of training
48f90bf
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-finetuned-minds14-enUS_2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
        metrics:
          - name: Wer
            type: wer
            value: 0.33943329397874855

whisper-tiny-finetuned-minds14-enUS_2

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7508
  • Wer Ortho: 0.3356
  • Wer: 0.3394
  • Cer: 0.2613
  • Cer Ortho: 0.2623

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer Cer Ortho
0.0136 7.14 100 0.6142 0.3362 0.3388 0.2587 0.2614
0.0009 14.29 200 0.6704 0.3288 0.3300 0.2515 0.2534
0.0011 21.43 300 0.6858 0.3054 0.3093 0.2363 0.2374
0.0005 28.57 400 0.7081 0.3455 0.3477 0.2699 0.2711
0.0004 35.71 500 0.7191 0.3467 0.3501 0.2727 0.2736
0.0001 42.86 600 0.7337 0.3405 0.3447 0.2652 0.2662
0.0001 50.0 700 0.7418 0.3393 0.3430 0.2636 0.2645
0.0001 57.14 800 0.7466 0.3387 0.3424 0.2634 0.2644
0.0001 64.29 900 0.7496 0.3350 0.3388 0.2604 0.2614
0.0001 71.43 1000 0.7508 0.3356 0.3394 0.2613 0.2623

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3