|
--- |
|
language: |
|
- es |
|
|
|
tags: |
|
- Emotion Analysis |
|
|
|
--- |
|
|
|
**Note**: This model & model card are based on the [finetuned XLM-T for Sentiment Analysis](cardiffnlp/twitter-xlm-roberta-base-sentiment) |
|
|
|
# twitter-XLM-roBERTa-base for Emotion Analysis |
|
This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of [IberLEF 2021 Conference](https://sites.google.com/view/iberlef2021/), where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. |
|
- [Our code for EmoEvalEs submission](https://github.com/gsi-upm/emoevales-iberlef2021). |
|
- [EmoEvalEs Dataset](https://github.com/pendrag/EmoEvalEs) |
|
## Example Pipeline with a [Tweet from @JaSantaolalla](https://twitter.com/JaSantaolalla/status/1398383243645177860) |
|
```python |
|
from transformers import pipeline |
|
model_path = "daveni/twitter-xlm-roberta-emotion-es" |
|
tokenizer_path = 'cardiffnlp/twitter-xlm-roberta-base' |
|
emotion_analysis = pipeline("text-classification", model=model_path, tokenizer=tokenizer_path) |
|
emotion_analysis("Einstein dijo: Solo hay dos cosas infinitas, el universo y los pinches anuncios de bitcoin en Twitter. Paren ya carajo aaaaaaghhgggghhh me quiero murir") |
|
``` |
|
``` |
|
[{'label': 'anger', 'score': 0.48307016491889954}] |
|
``` |
|
## Full classification example |
|
```python |
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import TFAutoModelForSequenceClassification |
|
from transformers import AutoTokenizer, AutoConfig |
|
import numpy as np |
|
from scipy.special import softmax |
|
# Preprocess text (username and link placeholders) |
|
def preprocess(text): |
|
new_text = [] |
|
for t in text.split(" "): |
|
t = '@user' if t.startswith('@') and len(t) > 1 else t |
|
t = 'http' if t.startswith('http') else t |
|
new_text.append(t) |
|
return " ".join(new_text) |
|
model_path = "daveni/twitter-xlm-roberta-emotion-es" |
|
tokenizer_path = 'cardiffnlp/twitter-xlm-roberta-base' |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path ) |
|
config = AutoConfig.from_pretrained(model_path ) |
|
# PT |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path ) |
|
text = "Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal." |
|
text = preprocess(text) |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
# Print labels and scores |
|
ranking = np.argsort(scores) |
|
ranking = ranking[::-1] |
|
for i in range(scores.shape[0]): |
|
l = config.id2label[ranking[i]] |
|
s = scores[ranking[i]] |
|
print(f"{i+1}) {l} {np.round(float(s), 4)}") |
|
``` |
|
Output: |
|
``` |
|
Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal. |
|
1) joy 0.7887 |
|
2) others 0.1679 |
|
3) surprise 0.0152 |
|
4) sadness 0.0145 |
|
5) anger 0.0077 |
|
6) disgust 0.0033 |
|
7) fear 0.0027 |
|
``` |
|
|
|
#### Limitations and bias |
|
|
|
- The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class. |
|
|
|
|
|
## Training data |
|
|
|
Pretrained weights were left identical to the original model released by [cardiffnlp](https://huggingface.co./cardiffnlp/twitter-xlm-roberta-base). We used the [EmoEvalEs Dataset](https://github.com/pendrag/EmoEvalEs) for finetuning. |
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
Coming soon |
|
``` |