davanstrien's picture
davanstrien HF staff
Update README.md
842ea78 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: scandi-fine-web-cleaner
    results: []
datasets:
  - data-is-better-together/fineweb-c

scandi-fine-web-cleaner

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the data-is-better-together/fineweb-c dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1816
  • Precision: 0.9524
  • Recall: 0.7018
  • F1: 0.8081
  • Auc Roc: 0.9648
  • Balanced Accuracy: 0.8480
  • Average Precision: 0.8906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Auc Roc Balanced Accuracy Average Precision
0.3165 1.0 100 0.2333 0.95 0.6667 0.7835 0.8099 0.8304 0.7721
0.1929 2.0 200 0.1359 0.9130 0.7368 0.8155 0.9778 0.8626 0.9105
0.1775 3.0 300 0.2245 0.9268 0.6667 0.7755 0.9481 0.8290 0.8721
0.1553 4.0 400 0.1816 0.9524 0.7018 0.8081 0.9648 0.8480 0.8906

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0