Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 2451975973
  • CO2 Emissions (in grams): 6.9906

Validation Metrics

  • Loss: 0.046
  • Accuracy: 0.989
  • Macro F1: 0.936
  • Micro F1: 0.989
  • Weighted F1: 0.989
  • Macro Precision: 0.929
  • Micro Precision: 0.989
  • Weighted Precision: 0.989
  • Macro Recall: 0.943
  • Micro Recall: 0.989
  • Weighted Recall: 0.989

Usage

This model has been trained to predict whether an article from a historic newspaper is a 'recipe' or 'not a recipe'. This model was trained on data generated by carrying out a keyword search of food terms and annotating examples results to indicate whether they were a recipe.

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-recipes-2451975973

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-recipes-2451975973", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-recipes-2451975973", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
Downloads last month
205
Safetensors
Model size
108M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.