|
import collections |
|
import sys |
|
import librosa |
|
import numpy |
|
import random |
|
import time |
|
import torchaudio |
|
from scipy.io.wavfile import read |
|
|
|
MU = 1800 |
|
|
|
def read_wave_to_frames_withbgm(path, bgmpath, sr=16000, save_sr=44100, frame_duration=10): |
|
orig_sr, orig_wav = read(path) |
|
if orig_wav.dtype == numpy.int16: |
|
orig_wav = orig_wav / 32768. |
|
if len(orig_wav.shape) > 1: |
|
orig_wav = numpy.mean(orig_wav, -1) |
|
wav = librosa.resample(orig_wav, orig_sr=orig_sr, target_sr=sr, res_type='polyphase') |
|
wav = (wav * 2**15).astype(numpy.int16) |
|
wav_bytes = wav.tobytes() |
|
frames = frame_generator(frame_duration, wav_bytes, sr) |
|
|
|
|
|
if save_sr != orig_sr: |
|
vocal_wav = librosa.resample(orig_wav, orig_sr=orig_sr, target_sr=sr, res_type='polyphase') |
|
else: |
|
vocal_wav = orig_wav |
|
orig_sr, bgm_wav = read(bgmpath) |
|
if bgm_wav.dtype == numpy.int16: |
|
bgm_wav = bgm_wav / 32768. |
|
if len(bgm_wav.shape) > 1: |
|
bgm_wav = numpy.mean(bgm_wav, -1) |
|
|
|
return frames, wav, vocal_wav, bgm_wav |
|
|
|
def read_wave_to_frames(path, sr=16000, frame_duration=10): |
|
|
|
|
|
orig_sr, wav = read(path) |
|
if wav.dtype == numpy.int16: |
|
wav = wav / 32768. |
|
if len(wav.shape) > 1: |
|
wav = numpy.mean(wav, -1) |
|
|
|
|
|
wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=sr, res_type='polyphase') |
|
|
|
|
|
|
|
|
|
|
|
wav = (wav * 2**15).astype(numpy.int16) |
|
wav_bytes = wav.tobytes() |
|
frames = frame_generator(frame_duration, wav_bytes, sr) |
|
return frames, wav |
|
|
|
|
|
class Frame(object): |
|
"""Represents a "frame" of audio data.""" |
|
def __init__(self, bytes, timestamp, duration): |
|
self.bytes = bytes |
|
self.timestamp = timestamp |
|
self.duration = duration |
|
|
|
|
|
def frame_generator(frame_duration_ms, audio, sample_rate): |
|
"""Generates audio frames from PCM audio data. |
|
|
|
Takes the desired frame duration in milliseconds, the PCM data, and |
|
the sample rate. |
|
|
|
Yields Frames of the requested duration. |
|
""" |
|
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2) |
|
offset = 0 |
|
timestamp = 0.0 |
|
duration = (float(n) / sample_rate) / 2.0 |
|
while offset + n < len(audio): |
|
yield Frame(audio[offset:offset + n], timestamp, duration) |
|
timestamp += duration |
|
offset += n |
|
|
|
|
|
def vad_generator(frames, sr, vad): |
|
vad_info = [] |
|
for frame in frames: |
|
vad_info.append(vad.is_speech(frame.bytes, sr)) |
|
return vad_info |
|
|
|
|
|
def vad_collector(sample_rate, frame_duration_ms, |
|
padding_duration_ms, vad, frames): |
|
"""Filters out non-voiced audio frames. |
|
|
|
Given a webrtcvad.Vad and a source of audio frames, yields only |
|
the voiced audio. |
|
|
|
Uses a padded, sliding window algorithm over the audio frames. |
|
When more than 90% of the frames in the window are voiced (as |
|
reported by the VAD), the collector triggers and begins yielding |
|
audio frames. Then the collector waits until 90% of the frames in |
|
the window are unvoiced to detrigger. |
|
|
|
The window is padded at the front and back to provide a small |
|
amount of silence or the beginnings/endings of speech around the |
|
voiced frames. |
|
|
|
Arguments: |
|
|
|
sample_rate - The audio sample rate, in Hz. |
|
frame_duration_ms - The frame duration in milliseconds. |
|
padding_duration_ms - The amount to pad the window, in milliseconds. |
|
vad - An instance of webrtcvad.Vad. |
|
frames - a source of audio frames (sequence or generator). |
|
|
|
Returns: A generator that yields PCM audio data. |
|
""" |
|
num_padding_frames = int(padding_duration_ms / frame_duration_ms) |
|
|
|
ring_buffer = collections.deque(maxlen=num_padding_frames) |
|
|
|
|
|
triggered = False |
|
|
|
voiced_frames = [] |
|
for frame in frames: |
|
is_speech = vad.is_speech(frame.bytes, sample_rate) |
|
|
|
sys.stdout.write('1' if is_speech else '0') |
|
if not triggered: |
|
ring_buffer.append((frame, is_speech)) |
|
num_voiced = len([f for f, speech in ring_buffer if speech]) |
|
|
|
|
|
|
|
if num_voiced > 0.9 * ring_buffer.maxlen: |
|
triggered = True |
|
sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,)) |
|
|
|
|
|
|
|
for f, s in ring_buffer: |
|
voiced_frames.append(f) |
|
ring_buffer.clear() |
|
else: |
|
|
|
|
|
voiced_frames.append(frame) |
|
ring_buffer.append((frame, is_speech)) |
|
num_unvoiced = len([f for f, speech in ring_buffer if not speech]) |
|
|
|
|
|
|
|
if num_unvoiced > 0.9 * ring_buffer.maxlen: |
|
sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration)) |
|
triggered = False |
|
yield b''.join([f.bytes for f in voiced_frames]) |
|
ring_buffer.clear() |
|
voiced_frames = [] |
|
if triggered: |
|
sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration)) |
|
sys.stdout.write('\n') |
|
|
|
|
|
if voiced_frames: |
|
yield b''.join([f.bytes for f in voiced_frames]) |
|
|
|
|
|
class ActivateInfo: |
|
def __init__(self, active, duration, start_pos, end_pos, keep=True): |
|
self.active = active |
|
self.duration = duration |
|
self.start_pos = start_pos |
|
self.end_pos = end_pos |
|
self.keep = keep |
|
|
|
def __add__(self, x): |
|
return x + self.duration |
|
|
|
def __repr__(self) -> str: |
|
return f"{self.active} {self.start_pos}, {self.end_pos}" |
|
|
|
|
|
class SegmentInfo: |
|
def __init__(self, type="raw", duration=0, start_pos=0, end_pos=0, frame_duration=10): |
|
self.type = type |
|
self.duration = duration |
|
self.start_pos = start_pos |
|
self.end_pos = end_pos |
|
self.frame_duration = frame_duration |
|
|
|
def get_wav_seg(self, wav: numpy.array, sr: int, frame_duration: int=None): |
|
fd = frame_duration if frame_duration is not None else self.frame_duration |
|
sample_pre_frame = fd*sr/1000 |
|
if self.type == "pad": |
|
return numpy.zeros((int(sample_pre_frame*self.duration), ), dtype=numpy.int16) |
|
return wav[int(self.start_pos*sample_pre_frame):int((self.end_pos*sample_pre_frame))] |
|
|
|
def __repr__(self) -> str: |
|
if self.type == "raw": |
|
text = f"{self.start_pos*self.frame_duration}:{self.end_pos*self.frame_duration}" |
|
else: |
|
text = f"[{self.duration*self.frame_duration}]" |
|
return text |
|
|
|
|
|
def get_sil_segments(active_info: ActivateInfo, sil_frame: int, attach_pos: str="mid") -> list: |
|
if active_info.duration >= sil_frame: |
|
if attach_pos == "tail": |
|
seg = [SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.start_pos+sil_frame)] |
|
elif attach_pos == "head": |
|
seg = [SegmentInfo(start_pos=active_info.end_pos-sil_frame, end_pos=active_info.end_pos)] |
|
elif attach_pos == "mid": |
|
seg = [ |
|
SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.start_pos+sil_frame // 2-1), |
|
SegmentInfo(start_pos=active_info.end_pos-sil_frame // 2+1, end_pos=active_info.end_pos), |
|
] |
|
else: |
|
raise NotImplementedError |
|
else: |
|
if attach_pos == "tail": |
|
seg = [ |
|
SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.end_pos), |
|
SegmentInfo(type="pad", duration=sil_frame-active_info.duration), |
|
] |
|
elif attach_pos == "head": |
|
seg = [ |
|
SegmentInfo(type="pad", duration=sil_frame-active_info.duration), |
|
SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.end_pos), |
|
] |
|
elif attach_pos == "mid": |
|
seg = [ |
|
SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.end_pos), |
|
] |
|
else: |
|
raise NotImplementedError |
|
return seg |
|
|
|
|
|
def merge_segment(segment: list) -> list: |
|
new_segment = [] |
|
last_s = None |
|
for s in segment: |
|
s: SegmentInfo |
|
if s.type == "pad": |
|
if last_s is not None: |
|
new_segment.append(last_s) |
|
last_s = None |
|
new_segment.append(s) |
|
continue |
|
if last_s is None: |
|
last_s = s |
|
else: |
|
if last_s.end_pos+1 == s.start_pos: |
|
last_s.end_pos = s.end_pos |
|
else: |
|
new_segment.append(last_s) |
|
last_s = s |
|
if last_s is not None: |
|
new_segment.append(last_s) |
|
return new_segment |
|
|
|
|
|
def random_frame(min_frame, max_frame): |
|
|
|
|
|
mu = MU |
|
|
|
sigma = (mu - min_frame) / 3 |
|
length = random.gauss(mu, sigma) |
|
length = int(min(max(length, min_frame), max_frame)) |
|
|
|
return length |
|
|
|
|
|
def cut_points_generator( |
|
vad_info, |
|
min_active_frame=20, |
|
sil_frame=50, |
|
sil_mid_frame=100, |
|
cut_min_frame=8 * 100, |
|
cut_max_frame=20 * 100, |
|
is_random_min_frame=False, |
|
): |
|
curr_min_frame = cut_min_frame |
|
last_active_frame = 0 |
|
is_last_active = False |
|
for i, is_curr_active in enumerate(vad_info): |
|
if is_curr_active and not is_last_active: |
|
last_active_frame = i |
|
elif not is_curr_active and is_last_active and i - last_active_frame <= min_active_frame: |
|
for j in range(last_active_frame, i): |
|
vad_info[j] = False |
|
is_last_active = is_curr_active |
|
|
|
start_pos = 0 |
|
end_pos = 0 |
|
duration = 0 |
|
is_active = vad_info[0] |
|
activate_info = [] |
|
for pos, vi in enumerate(vad_info): |
|
if is_active == vi: |
|
duration += 1 |
|
else: |
|
activate_info.append(ActivateInfo(is_active, duration, start_pos, pos-1)) |
|
is_active = vi |
|
start_pos = pos |
|
duration = 1 |
|
activate_info.append(ActivateInfo(is_active, duration, start_pos, end_pos)) |
|
|
|
segment_info = [] |
|
curr_segment = [] |
|
curr_segment_duration = 0 |
|
max_active_block = len(activate_info) |
|
|
|
for i in range(max_active_block): |
|
curr_ai = activate_info[i] |
|
|
|
if curr_ai.active: |
|
|
|
if curr_segment_duration == 0: |
|
if i == 0: |
|
curr_segment.append(SegmentInfo("pad", sil_frame)) |
|
else: |
|
sil_seg = activate_info[i-1] |
|
raw_sil_duration = min(sil_frame, sil_seg.duration // 2) |
|
end_pos = sil_seg.end_pos |
|
curr_segment = get_sil_segments( |
|
ActivateInfo( |
|
True, |
|
duration=raw_sil_duration, |
|
start_pos=sil_seg.end_pos-raw_sil_duration, |
|
end_pos=sil_seg.end_pos |
|
), |
|
sil_frame=sil_frame, |
|
attach_pos="head" |
|
) |
|
curr_segment_duration += sil_frame |
|
|
|
next_duration = curr_segment_duration + curr_ai.duration |
|
curr_ai_seg = SegmentInfo(start_pos=curr_ai.start_pos, end_pos=curr_ai.end_pos) |
|
|
|
if next_duration > cut_max_frame: |
|
|
|
|
|
if curr_ai.duration > curr_segment_duration: |
|
new_segment = get_sil_segments(activate_info[i-1], sil_frame, "head") |
|
new_segment.append(curr_ai_seg) |
|
if i < max_active_block - 1: |
|
new_segment.extend(get_sil_segments(activate_info[i+1], sil_frame, "tail")) |
|
else: |
|
new_segment.append(SegmentInfo(type="pad", duration=sil_frame)) |
|
|
|
segment_info.append(merge_segment(new_segment)) |
|
if is_random_min_frame: |
|
curr_min_frame = random_frame(cut_min_frame, cut_max_frame) |
|
curr_segment = [] |
|
curr_segment_duration = 0 |
|
else: |
|
|
|
if curr_segment_duration > 10 * 100: |
|
segment_info.append(merge_segment(curr_segment)) |
|
if is_random_min_frame: |
|
curr_min_frame = random_frame(cut_min_frame, cut_max_frame) |
|
curr_segment = get_sil_segments(activate_info[i-1], sil_frame, "head") |
|
curr_segment.append(curr_ai_seg) |
|
curr_segment_duration = sil_frame + curr_ai.duration |
|
elif next_duration > curr_min_frame: |
|
|
|
curr_segment.append(curr_ai_seg) |
|
if i < max_active_block - 1: |
|
|
|
curr_segment.extend(get_sil_segments(activate_info[i+1], sil_frame, "tail")) |
|
else: |
|
curr_segment.append(SegmentInfo(type="pad", duration=sil_frame)) |
|
|
|
segment_info.append(merge_segment(curr_segment)) |
|
if is_random_min_frame: |
|
curr_min_frame = random_frame(cut_min_frame, cut_max_frame) |
|
curr_segment = [] |
|
curr_segment_duration = 0 |
|
else: |
|
|
|
curr_segment.append(curr_ai_seg) |
|
curr_segment_duration += curr_ai.duration |
|
else: |
|
|
|
if curr_segment_duration == 0: |
|
raw_sil_duration = min(sil_frame, curr_ai.duration // 2) |
|
end_pos = curr_ai.end_pos |
|
curr_segment = get_sil_segments( |
|
ActivateInfo( |
|
True, |
|
duration=raw_sil_duration, |
|
start_pos=curr_ai.end_pos-raw_sil_duration, |
|
end_pos=curr_ai.end_pos |
|
), |
|
sil_frame=sil_frame, |
|
attach_pos="head" |
|
) |
|
curr_segment_duration += sil_frame |
|
else: |
|
|
|
|
|
|
|
if curr_ai.duration > sil_mid_frame: |
|
curr_segment.extend(get_sil_segments(curr_ai, sil_frame, "tail")) |
|
segment_info.append(merge_segment(curr_segment)) |
|
if is_random_min_frame: |
|
curr_min_frame = random_frame(cut_min_frame, cut_max_frame) |
|
curr_segment = [] |
|
curr_segment_duration = 0 |
|
else: |
|
|
|
curr_segment.extend(get_sil_segments(curr_ai, sil_mid_frame+1, attach_pos="mid")) |
|
curr_segment_duration += min(sil_mid_frame, curr_ai.duration) |
|
|
|
if len(curr_segment) > 3 and curr_segment_duration > 7 * 100: |
|
if activate_info[-1].active: |
|
curr_segment.append(SegmentInfo(type="pad", duration=sil_frame)) |
|
segment_info.append(merge_segment(curr_segment)) |
|
return segment_info |
|
|
|
|
|
def cut_points_storage_generator(raw_vad_info, cut_points: list, frame_duration=10) -> list: |
|
raw_vad_content = " ".join(["1" if i else "0" for i in raw_vad_info]) |
|
content = [] |
|
for cut_point in cut_points: |
|
line = [] |
|
for s in cut_point: |
|
s.frame_duration = frame_duration |
|
line.append(str(s)) |
|
content.append("|".join(line)) |
|
return raw_vad_content, "\n".join(content) |
|
|
|
|
|
def wavs_generator(raw_wav: numpy.array, cut_points: list, filename: str, sr: int, frame_duration: int) -> list: |
|
wavs = [] |
|
for idx, cp in enumerate(cut_points): |
|
clip = numpy.concatenate( |
|
[s.get_wav_seg(raw_wav, sr, frame_duration) for s in cp], |
|
axis=0 |
|
) |
|
wavs.append((clip, f"{filename}_{idx}_{int(clip.shape[0]/sr*1000)}.wav")) |
|
return wavs |
|
|