Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 18,265 Bytes
fc10d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import collections
import sys
import librosa
import numpy
import random
import time
import torchaudio
from scipy.io.wavfile import read

MU = 1800

def read_wave_to_frames_withbgm(path, bgmpath, sr=16000, save_sr=44100, frame_duration=10):
    orig_sr, orig_wav = read(path)
    if orig_wav.dtype == numpy.int16:
        orig_wav = orig_wav / 32768.
    if len(orig_wav.shape) > 1:
        orig_wav = numpy.mean(orig_wav, -1)
    wav = librosa.resample(orig_wav, orig_sr=orig_sr, target_sr=sr, res_type='polyphase')
    wav = (wav * 2**15).astype(numpy.int16)
    wav_bytes = wav.tobytes()
    frames = frame_generator(frame_duration, wav_bytes, sr)


    if save_sr != orig_sr:
        vocal_wav = librosa.resample(orig_wav, orig_sr=orig_sr, target_sr=sr, res_type='polyphase')
    else:
        vocal_wav = orig_wav
    orig_sr, bgm_wav = read(bgmpath)
    if bgm_wav.dtype == numpy.int16:
        bgm_wav = bgm_wav / 32768.
    if len(bgm_wav.shape) > 1:
        bgm_wav = numpy.mean(bgm_wav, -1)

    return frames, wav, vocal_wav, bgm_wav

def read_wave_to_frames(path, sr=16000, frame_duration=10):
    #start_time = time.time()
    #wav, orig_sr = librosa.load(path, sr=None, mono=True)
    orig_sr, wav = read(path)
    if wav.dtype == numpy.int16:
        wav = wav / 32768.
    if len(wav.shape) > 1:
        wav = numpy.mean(wav, -1)
    #print("load", time.time() - start_time)
    #start_time = time.time()
    wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=sr, res_type='polyphase')
    #wav = librosa.resample(wav, orig_sr=orig_sr, target_sr=sr, res_type='soxr_qq')
    #wav, orig_sr = torchaudio.load(path)
    #wav = torchaudio.functional.resample(wav, orig_sr, sr)
    #wav = wav.numpy()
    #print("resample", time.time() - start_time)
    wav = (wav * 2**15).astype(numpy.int16)
    wav_bytes = wav.tobytes()
    frames = frame_generator(frame_duration, wav_bytes, sr)
    return frames, wav


class Frame(object):
    """Represents a "frame" of audio data."""
    def __init__(self, bytes, timestamp, duration):
        self.bytes = bytes
        self.timestamp = timestamp
        self.duration = duration


def frame_generator(frame_duration_ms, audio, sample_rate):
    """Generates audio frames from PCM audio data.

    Takes the desired frame duration in milliseconds, the PCM data, and
    the sample rate.

    Yields Frames of the requested duration.
    """
    n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
    offset = 0
    timestamp = 0.0
    duration = (float(n) / sample_rate) / 2.0
    while offset + n < len(audio):
        yield Frame(audio[offset:offset + n], timestamp, duration)
        timestamp += duration
        offset += n


def vad_generator(frames, sr, vad):
    vad_info = []
    for frame in frames:
        vad_info.append(vad.is_speech(frame.bytes, sr))
    return vad_info


def vad_collector(sample_rate, frame_duration_ms,
                  padding_duration_ms, vad, frames):
    """Filters out non-voiced audio frames.

    Given a webrtcvad.Vad and a source of audio frames, yields only
    the voiced audio.

    Uses a padded, sliding window algorithm over the audio frames.
    When more than 90% of the frames in the window are voiced (as
    reported by the VAD), the collector triggers and begins yielding
    audio frames. Then the collector waits until 90% of the frames in
    the window are unvoiced to detrigger.

    The window is padded at the front and back to provide a small
    amount of silence or the beginnings/endings of speech around the
    voiced frames.

    Arguments:

    sample_rate - The audio sample rate, in Hz.
    frame_duration_ms - The frame duration in milliseconds.
    padding_duration_ms - The amount to pad the window, in milliseconds.
    vad - An instance of webrtcvad.Vad.
    frames - a source of audio frames (sequence or generator).

    Returns: A generator that yields PCM audio data.
    """
    num_padding_frames = int(padding_duration_ms / frame_duration_ms)
    # We use a deque for our sliding window/ring buffer.
    ring_buffer = collections.deque(maxlen=num_padding_frames)
    # We have two states: TRIGGERED and NOTTRIGGERED. We start in the
    # NOTTRIGGERED state.
    triggered = False

    voiced_frames = []
    for frame in frames:
        is_speech = vad.is_speech(frame.bytes, sample_rate)

        sys.stdout.write('1' if is_speech else '0')
        if not triggered:
            ring_buffer.append((frame, is_speech))
            num_voiced = len([f for f, speech in ring_buffer if speech])
            # If we're NOTTRIGGERED and more than 90% of the frames in
            # the ring buffer are voiced frames, then enter the
            # TRIGGERED state.
            if num_voiced > 0.9 * ring_buffer.maxlen:
                triggered = True
                sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
                # We want to yield all the audio we see from now until
                # we are NOTTRIGGERED, but we have to start with the
                # audio that's already in the ring buffer.
                for f, s in ring_buffer:
                    voiced_frames.append(f)
                ring_buffer.clear()
        else:
            # We're in the TRIGGERED state, so collect the audio data
            # and add it to the ring buffer.
            voiced_frames.append(frame)
            ring_buffer.append((frame, is_speech))
            num_unvoiced = len([f for f, speech in ring_buffer if not speech])
            # If more than 90% of the frames in the ring buffer are
            # unvoiced, then enter NOTTRIGGERED and yield whatever
            # audio we've collected.
            if num_unvoiced > 0.9 * ring_buffer.maxlen:
                sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
                triggered = False
                yield b''.join([f.bytes for f in voiced_frames])
                ring_buffer.clear()
                voiced_frames = []
    if triggered:
        sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
    sys.stdout.write('\n')
    # If we have any leftover voiced audio when we run out of input,
    # yield it.
    if voiced_frames:
        yield b''.join([f.bytes for f in voiced_frames])


class ActivateInfo:
    def __init__(self, active, duration, start_pos, end_pos, keep=True):
        self.active = active
        self.duration = duration
        self.start_pos = start_pos
        self.end_pos = end_pos
        self.keep = keep

    def __add__(self, x):
        return x + self.duration
    
    def __repr__(self) -> str:
        return f"{self.active} {self.start_pos}, {self.end_pos}"


class SegmentInfo:
    def __init__(self, type="raw", duration=0, start_pos=0, end_pos=0, frame_duration=10):
        self.type = type
        self.duration = duration
        self.start_pos = start_pos
        self.end_pos = end_pos
        self.frame_duration = frame_duration

    def get_wav_seg(self, wav: numpy.array, sr: int, frame_duration: int=None):
        fd = frame_duration if frame_duration is not None else self.frame_duration
        sample_pre_frame = fd*sr/1000
        if self.type == "pad":
            return numpy.zeros((int(sample_pre_frame*self.duration), ), dtype=numpy.int16)
        return wav[int(self.start_pos*sample_pre_frame):int((self.end_pos*sample_pre_frame))]

    def __repr__(self) -> str:
        if self.type == "raw":
            text = f"{self.start_pos*self.frame_duration}:{self.end_pos*self.frame_duration}"
        else:
            text = f"[{self.duration*self.frame_duration}]"
        return text


def get_sil_segments(active_info: ActivateInfo, sil_frame: int, attach_pos: str="mid") -> list:
    if active_info.duration >= sil_frame:
        if attach_pos == "tail":
            seg = [SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.start_pos+sil_frame)]
        elif attach_pos == "head":
            seg = [SegmentInfo(start_pos=active_info.end_pos-sil_frame, end_pos=active_info.end_pos)]
        elif attach_pos == "mid":
            seg = [
                SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.start_pos+sil_frame // 2-1),
                SegmentInfo(start_pos=active_info.end_pos-sil_frame // 2+1, end_pos=active_info.end_pos),
            ]
        else:
            raise NotImplementedError
    else:
        if attach_pos == "tail":
            seg = [
                SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.end_pos),
                SegmentInfo(type="pad", duration=sil_frame-active_info.duration),
            ]
        elif attach_pos == "head":
            seg = [
                SegmentInfo(type="pad", duration=sil_frame-active_info.duration),
                SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.end_pos),
            ]
        elif attach_pos == "mid":
            seg = [
                SegmentInfo(start_pos=active_info.start_pos, end_pos=active_info.end_pos),
            ]
        else:
            raise NotImplementedError
    return seg


def merge_segment(segment: list) -> list:
    new_segment = []
    last_s = None
    for s in segment:
        s: SegmentInfo
        if s.type == "pad":
            if last_s is not None:
                new_segment.append(last_s)
                last_s = None
            new_segment.append(s)
            continue
        if last_s is None:
            last_s = s
        else:
            if last_s.end_pos+1 == s.start_pos:
                last_s.end_pos = s.end_pos
            else:
                new_segment.append(last_s)
                last_s = s
    if last_s is not None:
        new_segment.append(last_s)
    return new_segment


def random_frame(min_frame, max_frame):
    #return random.randint(min_frame, max_frame)
    #mu = (max_frame + max_frame + min_frame) / 3
    mu = MU
    #sigma = (max_frame - mu) / 3
    sigma = (mu - min_frame) / 3
    length = random.gauss(mu, sigma)
    length = int(min(max(length, min_frame), max_frame))
    #print(length)
    return length


def cut_points_generator(
        vad_info, 
        min_active_frame=20, 
        sil_frame=50, 
        sil_mid_frame=100, 
        cut_min_frame=8 * 100, 
        cut_max_frame=20 * 100, 
        is_random_min_frame=False,
    ):
    curr_min_frame = cut_min_frame
    last_active_frame = 0
    is_last_active = False
    for i, is_curr_active in enumerate(vad_info):
        if is_curr_active and not is_last_active:
            last_active_frame = i
        elif not is_curr_active and is_last_active and i - last_active_frame <= min_active_frame:
            for j in range(last_active_frame, i):
                vad_info[j] = False
        is_last_active = is_curr_active

    start_pos = 0
    end_pos = 0
    duration = 0
    is_active = vad_info[0]
    activate_info = []
    for pos, vi in enumerate(vad_info):
        if is_active == vi:
            duration += 1
        else:
            activate_info.append(ActivateInfo(is_active, duration, start_pos, pos-1))
            is_active = vi
            start_pos = pos
            duration = 1
    activate_info.append(ActivateInfo(is_active, duration, start_pos, end_pos))
    # print(activate_info)
    segment_info = []
    curr_segment = []
    curr_segment_duration = 0
    max_active_block = len(activate_info)
    # 需要说明的是,active_info中必然是voice和unvoice交替的。
    for i in range(max_active_block):
        curr_ai = activate_info[i]
        # print("start", curr_segment_duration, curr_ai.duration)
        if curr_ai.active:
            # 当分片中的第一个段是voice时,往前添加静音
            if curr_segment_duration == 0:
                if i == 0:
                    curr_segment.append(SegmentInfo("pad", sil_frame))
                else:
                    sil_seg = activate_info[i-1]
                    raw_sil_duration = min(sil_frame, sil_seg.duration // 2)
                    end_pos = sil_seg.end_pos
                    curr_segment = get_sil_segments(
                        ActivateInfo(
                            True, 
                            duration=raw_sil_duration,
                            start_pos=sil_seg.end_pos-raw_sil_duration, 
                            end_pos=sil_seg.end_pos
                        ),
                        sil_frame=sil_frame,
                        attach_pos="head"
                    )
                curr_segment_duration += sil_frame
            # 然后判断往分片添加该voice段之后的长度变化
            next_duration = curr_segment_duration + curr_ai.duration
            curr_ai_seg = SegmentInfo(start_pos=curr_ai.start_pos, end_pos=curr_ai.end_pos)
            # print(next_duration)
            if next_duration > cut_max_frame:
                # 当添加该段后超出最大长度后,丢弃该分片中之前的段,仅保留当前段
                # 这里有个隐含的条件:每个分片中如果包含超过一个voice段,那么其总和必然短于最短长度。而当前段长度不短于cut_max_frame-curr_min_frame
                if curr_ai.duration > curr_segment_duration:
                    new_segment = get_sil_segments(activate_info[i-1], sil_frame, "head")
                    new_segment.append(curr_ai_seg)
                    if i < max_active_block - 1:
                        new_segment.extend(get_sil_segments(activate_info[i+1], sil_frame, "tail"))
                    else:
                        new_segment.append(SegmentInfo(type="pad", duration=sil_frame))
                    # print("1", len(segment_info), curr_segment)
                    segment_info.append(merge_segment(new_segment))
                    if is_random_min_frame:
                        curr_min_frame = random_frame(cut_min_frame, cut_max_frame)
                    curr_segment = []
                    curr_segment_duration = 0
                else:
                    # print("2", len(segment_info), curr_segment)
                    if curr_segment_duration > 10 * 100:
                        segment_info.append(merge_segment(curr_segment))
                        if is_random_min_frame:
                            curr_min_frame = random_frame(cut_min_frame, cut_max_frame)
                    curr_segment = get_sil_segments(activate_info[i-1], sil_frame, "head")
                    curr_segment.append(curr_ai_seg)
                    curr_segment_duration = sil_frame + curr_ai.duration
            elif next_duration > curr_min_frame:
                # 长度足够就添加尾部静音后保存该分片,开新分片
                curr_segment.append(curr_ai_seg)
                if i < max_active_block - 1:
                    # print(activate_info[i+1])
                    curr_segment.extend(get_sil_segments(activate_info[i+1], sil_frame, "tail"))
                else:
                    curr_segment.append(SegmentInfo(type="pad", duration=sil_frame))
                # print("3", len(segment_info), curr_segment)
                segment_info.append(merge_segment(curr_segment))
                if is_random_min_frame:
                    curr_min_frame = random_frame(cut_min_frame, cut_max_frame)
                curr_segment = []
                curr_segment_duration = 0
            else:
                # 不够就加上然后等待
                curr_segment.append(curr_ai_seg)
                curr_segment_duration += curr_ai.duration
        else:
            # 处理静音
            if curr_segment_duration == 0:
                raw_sil_duration = min(sil_frame, curr_ai.duration // 2)
                end_pos = curr_ai.end_pos
                curr_segment = get_sil_segments(
                    ActivateInfo(
                        True, 
                        duration=raw_sil_duration,
                        start_pos=curr_ai.end_pos-raw_sil_duration, 
                        end_pos=curr_ai.end_pos
                    ),
                    sil_frame=sil_frame,
                    attach_pos="head"
                )
                curr_segment_duration += sil_frame 
            else:
                # 对于出现的静音片段,剪切到sil_mid_frame长度内
                #curr_segment.extend(get_sil_segments(curr_ai, sil_mid_frame, attach_pos="mid"))
                #curr_segment_duration += min(sil_mid_frame, curr_ai.duration)
                if curr_ai.duration > sil_mid_frame:
                    curr_segment.extend(get_sil_segments(curr_ai, sil_frame, "tail"))
                    segment_info.append(merge_segment(curr_segment))
                    if is_random_min_frame:
                        curr_min_frame = random_frame(cut_min_frame, cut_max_frame)
                    curr_segment = []
                    curr_segment_duration = 0
                else:
                    # 对于出现的静音片段,剪切到sil_mid_frame长度内
                    curr_segment.extend(get_sil_segments(curr_ai, sil_mid_frame+1, attach_pos="mid"))
                    curr_segment_duration += min(sil_mid_frame, curr_ai.duration)
        # print(curr_segment_duration, curr_segment)
    if len(curr_segment) > 3 and curr_segment_duration > 7 * 100:
        if activate_info[-1].active:
            curr_segment.append(SegmentInfo(type="pad", duration=sil_frame))
        segment_info.append(merge_segment(curr_segment))
    return segment_info


def cut_points_storage_generator(raw_vad_info, cut_points: list, frame_duration=10) -> list:
    raw_vad_content = " ".join(["1" if i else "0" for i in raw_vad_info])
    content = []
    for cut_point in cut_points:
        line = []
        for s in cut_point:
            s.frame_duration = frame_duration
            line.append(str(s))
        content.append("|".join(line))
    return raw_vad_content, "\n".join(content)


def wavs_generator(raw_wav: numpy.array, cut_points: list, filename: str, sr: int, frame_duration: int) -> list:
    wavs = []
    for idx, cp in enumerate(cut_points):
        clip = numpy.concatenate(
            [s.get_wav_seg(raw_wav, sr, frame_duration) for s in cp],
            axis=0
        )
        wavs.append((clip, f"{filename}_{idx}_{int(clip.shape[0]/sr*1000)}.wav"))
    return wavs